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Part I
Hartree-Fock-Bogoliubov
mean-field theory

I. HAMILTONIAN DESCRIPTION

Take an interacting many-body system of electrons de-
scribed by the Hamiltonian

H = Hy + Hiyt

= ZCTH”CJ + = ZZC c,/V, el e (1)
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with ¢f(c) fermionic creation (annihilation) operators and

1= (4, ) (2)

composite degrees of freedom of purely spacial indices
i and an additional orbital index at each site s; such as
spin. It follows directly from the composite notation that

Doi = 2o, 2o and Gij = 005,

A. Wannier spinless potential

Let us consider ultra-localized/Wannier orbitals such
that the interaction tensor can approximately behave as

‘/JZ/JZ, ~ vV J(sii/(sjj/ (3)
mediated by a spinless electrostatic scalar potential
v v = (7 — 7)), with 0¥ = oIt (4)

It follows that
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A perturbation theory treatment of the interaction
based on path integrals starts by casting the Hamilto-
nian into its normal-ordered form. Given the equal-time
fermionic anti-commutator properties,

{ci,c J}—czc —|—c ¢ (6)
{ei e j}:{cjﬂci}:(sij (7)
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one obtains
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See that from the normal ordering of Hj,; a non-physical
spurious self-interaction term 1/ QCICiU“ reveals itself ex-
plicitly, which should not take part since single electrons
cannot interact with themselves. This term can be re-
moved preemptively by incorporating it in Eq.([l) instead
with a negative sign,

mt_ == ZC C;U (10)

Within the scope of this approximation the normal-
ordered Hamiltonians takes the form

H= ZCTH”CJ—I— ZcTch”cc (11)

II. MEAN-FIELD
HARTREE-FOCK-BOGOLIUBOV DECOUPLING

We wish to derive from Eq.(I)) the explicit form of the
Hartree/electrostatic Xy, Fock/exchange Y and Bo-
goliubov /pairing X self-energies between spatial sites
1 and j, being matrices over orbital space. For this, one



must Hartree-Fock-Bogoliubov decouple the Hamiltonian
in Eq.([) such that it could be expressed as:

H ~ Ho + H,

+HE + HB

1 int

(12)
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In particular, within a Nambu-spinor representation,
which we will be presenting next, we should be able to
make this Hamiltonian the form

H=53 e (H59+ZJ) &, (13)
ij
having an inherent Bogoliubov-de-Gennes (BdG) sym-
metry.

A. Nambu representation

For this derivation we focus on the system’s reduced
density matrix (rDM) equation of motion (EoM). In nor-
mal systems, i.e non-superconducting systems, the rDM
defined as pee = (c;c,-) is sufficient, however, if one wishes
to study superconducting systems, one must also account
for the anomalous/pairing terms. For this, we introduce
Nambu-spinors representation with doubling of degrees
of freedom so that electron e, hole h become additional

quantum numbers,

VZT (cj ¢i) and & = (3) (14)
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The corresponding Nambu rDM, can then be written as
the direct /tensor product of this Nambu-spinors for each
of the e, h combinations

pij = <5;r ® &) (15)
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Directly from the equal-time fermionic anti-
commutator properties in Eqgs.(6)-(), this terms
relate to themselves and to each other as

pe. = (ple) and pg, = —pl}, (16)
P = b — ot and pil, = (o1} (17)

Moreover, accounting for the additional spin orbital
quantum number, the Nambu-spinor corresponds instead
to the 4-spinor

&d=(c ¢)= (CIT c}i Cit cz¢> (18)

such that each composite rDM is a matrix over orbital
space, reading explicitly as
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and relating to themselves and to each other as
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To clarify possible misinterpretations of the notation,
see that the the underlying electron-hole structure of an
object is being concealed with the check notation while
the underlying spin structure of an object is being con-
cealed within the bold notation. The bold notation of
a composite index ¢ = (i, ;) does not underlies the ob-
jects spin structure, so beware the differences between

= 2 and pil = [ Y5 T gt The
notation p is not applicable for now since we are con-
sidering only spin and no other orbital degree of freedom.
See that, for example, in a spinless case we would write

P =0l phs phe P ]

B. Nambu mean-field Hamiltonian

We start by solving for the purely electronic rDM equa-
tion of motions in the Heisenberg picture of quantum me-
chanics, where the fermionic operators evolve accordingly
to the Heisenberg equation. We have

L= (el - me) @

with H the Hamiltonian in Eq.(TI) and 2 the imaginary
unit. The time dependency in the fermionic operators is
being omitted for compactness.

Making use of the fermionic anti-commutator proper-
ties, these commutators read, respectively,
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The commutators reading

{CT s, CT} =cl,0p; (25)
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The complete Heisenberg commutators then yield
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Substituting Eqgs.(31)) and (32)) back into Eq.(??) yields

ch,-> — Hga <c;.ca>
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Coming back to the rDM definitions and commutating
the terms it reads
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Notice, however, that the interaction term will give rise
to expectation values of four-operators. For this, we in-
troduce a mean-field approximation where we assume
the two-particle expectation value to simply behave as a
product of two one-particle expectation values. From this
mean-field decoupling we can then make use of Wick’s
theorem, yielding
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From this approximation, we defining the Hartree,
Fock and Bogoliubov self-energies, themselves self-
consistently dependent on the rDM, respectively as

SH =6i; Yy vpe> (35)
5P = -l (36)
i =o', (37)

The interacting term of Eq.(??) yield
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where [-]%% is the element at position s;s;, e.g [M]"T =
M]1,1]. Putting the three pieces together, and account-
ing for the complete spin structure, the purely electronic

rDM EoM yields and shown in Eq.#2).
Note that, from the relations in Eqgs.(T8)- (1),
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The purely electronic rDM EoM then yields
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where we have defined
HY .= HY +26;; + 2% (43)

Analogously for the anomalous rDM EoM, we obtain
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and finally
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Finally, as introduced in Eqgs.(?7?)-(??), we can rep-
resent the Nambu rDM EoM in terms of an effective

Bogoliubov-de Gennes (BdG) Hamiltonian H as simply
as
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It would be useful if we could express 3 more com-
pactly in terms of p. For this, and accounting for their
spin structure, we re-express the Hartree term as
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with ¢ and 7 as Pauli matrices but operating in their
respectively spin and electron-hole subspaces the Hamil-
tonian and @ (var rho instead of rho) a newly defined
BdG symmetric object:
P, T Peh
- LT
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Likewise, the Fock and Bogoliubov term, accounting
for their spin structure, read as
Bj =~ v pl (57)
=3 =0 pl, (58)

but can be re-expressed together in terms of the Nambu

rDM as
Z;Z + Eg = ¥ [TZ ® Uo]ﬁij [Tz & UO]
= f’Uij [TZ ® Uo]éij [Tz ® UO] (59)

We can then compactly rewrite the Nambu mean field
Hamiltonian as
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See that, apart from the Nambu/BdG symmetries of
Eq.(B2), there are additional constraint: the Hartree
and Fock terms inherent the symmetry from Eq.(20), i.e
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All these symmetries relations can be summarized as

59— (Sj")T (63)

Y = 1, @ o] (53]2)* [Tz ® 00] (64)

C. Orbital-dependent interactions

We now generalize the interaction model to include
spin-spin interactions with orbital matrix elements Q¢
with Q,ss = Qg;s,- The charge-charge interaction is re-
covered with Q = [r. ® 0p]. In this context, see that
the potential as it is written Eq.(B) is no longer true, but
should read instead as
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As intended, the spurious interaction
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cancel out when writing the Hamiltonian it it’s normal-
ordered form leaving us only with

mt = E E E 151 Js {Qs s’v Qs s }stg.cis;

i8; JSj s;s

From Eq.(®3), &7), (B8), the Hartree-Fock-Bogoliubov
self-energies considering orbital-dependent interactions
read respectively as

%Y =0,;,Q > v'Tr (po) (67)
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and thus, the Nambu self-energy becomes
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1. Alternate Nambu basis

One may define the Nambu spinor differently. For ex-
ample, instead of éj in Eq.(I8), there is also common to
encounter the so-called rotated basis where

EZT = ( c;r lioyei]) ) = ( CIT CL ciy —cit ) (71)

These relate to the previous choice of basis as
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with U is a unitary matrix (i.e u'u=uu' = 1) reading
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The rotated basis Nambu rDMs, explicitly reading
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can then be expressed also in terms of U as

pi; = (c o) =Ed wus) =up,u" (1)

Likewise, the matrix for the Nambu Q becomes Q =

UQU'. Since the last term of § in Eq.(56) transforms

into itself, then it also follows that g = Ugid' and thus
T -ust’ asin Eq.(©0):
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where we used that I/ is unitary and the cyclic property
of the trace

T (' Qe out) = T (W' Qo) = T (Q2™) (77)

As a result of this transformation the Nambu symmetries
expressed in Eq.([52) become
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Using the fact that U is unitary, Eq.(64) then becomes
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The Nambu symmetries relations for the rotated basis
read as

9 (z‘:ﬁ)T (80)
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D. Hubbard model

Consider, instead of the spinless potential from Eq.(d),
a spinful Hubbard potential

Uij = U(SU (82)

In this model, the original non-normal-ordered interac-
tion Hamiltonian from Eq.(#) is instead
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where n;,, = cl

is, Cis; 18 the number operator and

(nitnir — nipdis) + (nayniy —ni di) =0 (84)

because njs, nis, = (ns,)?> = n4s, (there is or there is not
an electron at site ¢ and spin s;, i.e n;s, = 0 or 1). Using

that
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one can simply write
Hint — HU = Uannu (86)
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Also, see that by definition of the model, spurious inter-
action do not take part so there is no need to subtracting
them preemptively. The Nambu self-energy term then
reads

$id v =Ub;j (1 [T2 ® op] T ([TZ ® oo )
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