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I. INTRODUCTION

Hexagonal Boron Nitride (hBN) is a 2D material composed of a simple sheet of alternating boron and nitrogen
atoms organized in a planar honeycomb lattice. hBN shares a lot of similarities with the infamous Graphene, also
a 2D honeycomb structure but composed only of carbon atoms, although hBN has a slightly larger lattice constant
a0 = 2.5Å (about 1.8%). However, the most relevant distinction is that graphene behaves as a semi-metal with a
zero-gap at its massless Dirac points while hBN, due to the electric repulsion between the boron and nitrogen atoms,
behaves as a semiconductor and has an opening gap of about ϵ =5.9eV at its Dirac points.

II. HBN DESCRIPTION IN POSITION SPACE

A. Position Space Lattice

As shown depicted in �gure (1), hexagonal boron nitride (hBN) is composed of boron (depicted in red) and nitrogen
(depicted in blue) atoms disposed in a two-dimensional honeycomb lattice, with a lattice constant of a0. This
honeycomb lattice can be described as a triangular Bravais lattice (depicted in gray shading) generated by the vectors
basis

a1 = a0

(
1

2
,

√
3

2

)
, (II.1)

a2 = a0

(
−1

2
,

√
3

2

)
(II.2)

A generic lattice vector R can then be written as

R = n1a1 + n2a2, where n1, n2 ∈ Z (II.3)

such that, a generic function f(r) follows the periodicity of the lattice, this is

f(r+R) = f(r). (II.4)

In each unit cell (depicted by the dashed black line), we have one atom of boron and one atom of nitride, which we
designate as sub-lattices A and B, of respective positions

sA = (0, 0), (II.5)

sB =
a0√
3
(0, 1). (II.6)

For each site A, the �rst nearest neighbors of type B are given by

δ1 =
a0√
3
(0, 1) (II.7)

δ2 =
a0√
3

(
−
√
3

2
,−1

2

)
(II.8)

δ3 =
a0√
3

(√
3

2
,−1

2

)
(II.9)

B. Position Space Tight-Binding Hamiltonian

We can write this system's total Hamiltonian in real position-space and in second quantization as

H = HA +HB +Hhop (II.10)
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Figure 1. (a) Honeycomb lattice structure of hBN constructed by two superposed triangular sub-lattices A (red atoms ) and
B (blue atoms). The vectors a1 and a2 are the lattice unit vectors and δ1, δ2 and δ3 are the nearest-neighbor vectors. (b)
Corresponding Brillouin zone. The Dirac points are located at K+ and K−. The dashed red and blue lines represent the shift
of the Brillouin zone from a hexagon shape to a rectangular shape.

where

HA =
∑
i

ϵAa
†
i (R)ai(R) (II.11)

is the free-particle Hamiltonian of the boron atoms in sites A an, ai/a
†
i the ladder operators in a given site i.

Analogously,

HB =
∑
i

ϵBb
†
i (R)bi(R) (II.12)

is the free-particle Hamiltonian of the nitrogen atoms in sites B. Notice that, contrarily to graphene, since the atoms
on sites A and B are di�erent, the free-particle energies ϵA and ϵB are inherently di�erent. At last, the term

Hhop =
∑
i,j

ti,j(R)
(
a†i (R)bj(R) + b†j(R)ai(R)

)
(II.13)

is the interaction Hamiltonian between neighboring sites i and j describing the possible hoppings from site B to site
A and vice-versa. Considering only �rst neighbors, and since the surrounding atoms are all the same, the hopping
terms is given by a constant term and can be pulled out of the sum, i.e ti,j(R) → −t. We have

Hhop = −t
∑
⟨i,j⟩

(
a†(Ri)b(Ri + δj) + b†(Rj)a(Ri − δj)

)
(II.14)

where we denote that we are only dealing with �rst neighbors with ⟨i, j⟩ (although it's redundant since we are already
specifying the �rst neighbors with +δj). Substituting back into (II.10), and making the site i explicit instead on the
position R [i.e ai(R) ≡ a(Ri)], the total Hamiltonian yields

H =
∑
i

ϵAa
†(Ri)a(Ri) +

∑
i

ϵBb
†(Ri)b(Ri)− t

∑
⟨i,j⟩

(
a†(Ri)b(Ri + δj) + b†(Rj)a(Ri − δj)

)
(II.15)
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III. HBN DESCRIPTION IN RECIPROCAL SPACE

A. Reciprocal Space Lattice

Given the lattice periodicity described in (II.4), we can express a generic function f(r) in reciprocal space as a
Fourier series

f(r) =
∑
k

e+iG·rf(k) (III.1)

where, given (II.4),

∑
k

e+iG·rf(k) =
∑
k

e+iG·(r+R)f(k)

⇒ G ·R = 2πn, where n ∈ Z (III.2)

This holds true if, for a given reciprocal space translation,

G = n1b1 + n2b2 (III.3)

the two reciprocal basis vectors are such that

ai · bj =
1

2π
δij (III.4)

Thus, one choice of basis is

b1 =
2π

V
(R90ºa2) =

4π√
3a0

(
−
√
3,−1

)
(III.5)

b2 =
2π

V
(R90ºa1) =

4π√
3a0

(
−
√
3,+1

)
(III.6)

where R90º is a 90º rotation matrix and V is the volume of the unit cell,

V = |a1 · (R90ºa2) | =
√
3a0
2

(III.7)

We obtain

b1 =
4π√
3a0

(
−
√
3,−1

)
(III.8)

b2 =
4π√
3a0

(
−
√
3,+1

)
(III.9)
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The volume is given by

V = |a1 · (R90ºa2) |

=

∣∣∣∣a02
[

1√
3

]
·
[
0 −1
1 0

]
a0
2

[
−1√
3

]∣∣∣∣
=

∣∣∣∣a04
[

1√
3

]
·
[
−
√
3

−1

]∣∣∣∣
=
∣∣∣−a0

4
(
√
3 +

√
3)
∣∣∣

=

√
3a0
2

□ (III.10)

and the reciprocal basis vectors as

b1 =
2π

V
(R90ºa2) =

4π√
3a0

(
−
√
3,−1

)
(III.11)

and

b2 =
2π

V
(R90ºa1) =

4π√
3a0

(
−
√
3,+1

)
(III.12)

B. Reciprocal Space Tight-Binding Hamiltonian

We can represent the total Hamiltonian (II.15) in reciprocal space, expressing the ladder operators a/a† and b/b†

in a Fourier series given the respective periodicity sA and sB . This is

a(Ri) =
1√
V

∑
k

e+ik·(Ri+sA)a(k) (III.13)

b(Ri) =
1√
V

∑
k

e+ik·(Ri+sB)b(k) (III.14)

Substituting (III.13) and (III.14) into (II.15) yields

H =
∑
i

ϵAa
†(Ri)a(Ri) +

∑
i

ϵBb
†(Ri)b(Ri)− t

∑
⟨i,j⟩

(
a†(Ri)b(Ri + δj) + b†(Ri)a(Ri − δj)

)
=

1

N

∑
i

ϵA

(∑
k

e−ik·(Ri+sA)a†(k)

)(∑
k′

e+ik′·(Ri+sA)a(k′)

)

+
1

N

∑
i

ϵB

(∑
k

e−ik·(Ri+sB)b†(k)

)(∑
k′

e+ik′·(Ri+sB)b(k′)

)

− 1

N
t
∑
⟨i,j⟩

(∑
k

e−ik·(Ri+sA)a†(k)

)(∑
k′

e+ik′·(Ri+δj+sB)b(k′)

)

+

(∑
k

e−ik·(Ri+sB)b†(k)

)(∑
k′

e+ik′·(Ri−δj+sA)a(k′)

)
(III.15)

Given the identity

δ(k− k′) =
1

N

∑
i

e−iRi·(k−k′) (III.16)
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we can rearrange (III.15) to make (III.16) explicit. It follows that

H =
∑
k,k′

(
1

N

∑
i

e−iRi·(k−k′)

)
e−isA·(k−k′)ϵAa

†(k)a(k′)

+
∑
k,k′

(
1

N

∑
i

e−iRi·(k−k′)

)
e−isB ·(k−k′)ϵBb

†(k)b(k′)

− t
∑
k,k′

(
1

N

∑
i

e−iRi·(k−k′)

)(
e−ik·sAe+ik′·δje+ik′·sB

)
a†(k)b(k′)

− t
∑
k,k′

(
1

N

∑
i

e−iRi·(k−k′)

)∑
⟨j⟩

(
e−ik·sBe−ik′·δje+ik′·sA

)
b†(k)a(k′) (III.17)

and thus

H =
∑
k

ϵAa
†(k)a(k′) +

∑
k

ϵBb
†(k)b(k′)

− t
∑
k

∑
⟨j⟩

e+ik·(δj+sB−sA)

 a†(k)b(k)

− t
∑
k

∑
⟨j⟩

e−ik·(δj+sB−sA)

 b†(k)a(k) (III.18)

Notice that, given the de�nition of sA and sB , we have that sB − sA = δ1. We de�ne a new operator

γk =
∑
⟨j⟩

e+ik·(δj+δ1), (III.19)

re-express (III.18) in terms of it. The Hamiltonian in momentum space is then given by

H =
∑
k

ϵA(k)a
†(k)a(k) +

∑
k

ϵB(k)b
†(k)b(k)− t

∑
k

(
γka

†(k)b(k) + γ†
kb

†(k)a(k)
)
. (III.20)

We can rewrite the system's Hamiltonian in matrix form as

H =
∑
k

c†(k)Hkc(k). (III.21)

where we de�ned a new composite state and a new Hamiltonian as

c(k) =

[
a(k)
b(k)

]
and Hk =

[
ϵA −tγk

−tγ†
k ϵB

]
. (III.22)

Hint =
∑
k

c†(k)Hkc(k)

=
∑
k

[
a†(k) b†(k)

] [ ϵA −tγk
−tγ†

k ϵB

] [
a(k)
b(k)

]
=
∑
k

[
a†(k) b†(k)

] [ ϵAa(k)− tγkb(k)

−γ†
ka(k) + ϵBb(k)

]
=
∑
k

(
ϵA(k)a

†(k)a(k) + ϵB(k)b
†(k)b(k)− tγka

†(k)b(k)− tγ†
kb

†(k)a(k)
)

□ (III.23)
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IV. HBN BAND STRUCTURE

A. Finding the Eigen-Energies

To calculate the band structure we �rst need to �nd the eigenvalues of the Hamiltonian Hk. This is an easy task
since it's just a 2x2 matrix. We obtain

0 = det (Hk − Ek1)

=

∣∣∣∣ ϵA − Ek −tγk
−tγ†

k ϵB − Ek

∣∣∣∣
= (ϵA − Ek) (ϵB − Ek)− t2|γk|2

= ϵAϵB − (ϵA + ϵB)Ek + E2
k − t2|γk|2 (IV.1)

and thus

Ek =
1

2
(ϵA + ϵB)±

1

2

√
(ϵA + ϵB)

2 − 4 (ϵAϵB − t2|γk|2)

=

(
ϵA + ϵB

2

)
±

√(
ϵA − ϵB

2

)2

+ t2|γk|2 (IV.2)

In frequency space, |γk|2 is given by

|γk|2 =

∑
⟨j⟩

e+ik·(δj+δ1)

∑
⟨j′⟩

e−ik·(δj′+δ1)


=
(
e+ik·δ1 + e+ik·δ2 + e+ik·δ3

)
e+ik·δ1

(
e−ik·δ1 + e−ik·δ2 + e−ik·δ3

)
e−ik·δ1

=
(
e+ik·δ1 + e+ik·δ2 + e+ik·δ3

) (
e−ik·δ1 + e−ik·δ2 + e−ik·δ3

)
= 1 + e+ik·(δ1−δ2) + e+ik·(δ1−δ3) + e+ik·(δ2−δ1) + 1 + e+ik·(δ2−δ3) + e+ik·(δ3−δ1) + e+ik·(δ3−δ2) + 1

= 3 +
(
e+ik·(δ1−δ2) + e−ik·(δ1−δ2)

)
+
(
e+ik·(δ1−δ3) + e−ik·(δ1−δ3)

)
+
(
e+ik·(δ2−δ3) + e−ik·(δ2−δ3)

)
= 3 + 2 cos(δ1 − δ2) + 2 cos(δ1 − δ3) + 2 cos(δ2 − δ3) (IV.3)

Given the de�nition in (II.7), (II.8) and (II.9) we have

|γk|2 = 3 + 2 cos
(a0
2

[
kx +

√
3ky

])
+ 2 cos

(a0
2

[
−kx +

√
3ky

])
+ 2 cos (−a0kx) (IV.4)

Using the identity

cos(a+ b) + cos(a− b) = (cos a cos b− sin a sin b) + (cos a cos(−b)− sin a sin(−b))

= (cos a cos b− sin a sin b) + (cos a cos b+ sin a sin b)

= 2 cos a cos b (IV.5)

we obtain

|γk|2 = 3 + 4 cos
(a0
2
kx

)
cos

(
a0
√
3

2
ky

)
+ 2 cos (a0kx) (IV.6)

Substituting (IV.6) directly into (IV.2) yields

E±
k (kx, ky) =

(
ϵA + ϵB

2

)
±

√√√√(ϵA − ϵB
2

)2

+ t2

[
3 + 2 cos (a0kx) + 4 cos

(
a0
√
3

2
ky

)
cos
(a0
2
kx

)]
. (IV.7)

Notice that, if ϵA = ϵB , as is the case for graphene, the term ((ϵA − ϵB)/2)
2 is zero and the band gap closes at the so

called Dirac points (for reason we will see later),
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K+ =

(
+

4π

3a0
, 0

)
(IV.8)

K− =

(
− 4π

3a0
, 0

)
(IV.9)

since

0 = 3 + 2 cos
(
a0K

±
x

)
+ 4 cos

(
a0
√
3

2
K±

y

)
cos
(a0
2
K±

x

)
= 3 + 2 cos

(
±a0

2π

a0

2

3

)
+ 4 cos (0) cos

(
±a0

2

2π

a0

2

3

)
= 3 + 2 cos (±(π/3 + π)) + 4 cos (±(π − π/3))

= 3− 2 cos (π/3)− 4 cos (π/3)

= 3− 2
1

2
− 4

1

2
= 3− 1− 2

= 0 □ (IV.10)

On the other hand, in the case for hBN, at this K points we have a band of (ϵA+ϵB)/2 ≡ 0. It has been demonstrated
that this indirect-gap semiconductor has a band-gap of ϵ = 5.95 eV. If we de�ne the zero energy point at (ϵA−ϵB)/2 ≡ ϵ
such that ϵA ≡ ϵ and ϵA ≡ −ϵ we obtain

E±
k (kx, ky) = ±

√√√√ϵ2 + t2

[
3 + 2 cos (a0kx) + 4 cos

(
a0
√
3

2
ky

)
cos
(a0
2
kx

)]
. (IV.11)

Figure 2. hBN band structure within the �rst Brillouin zone with parameters t = 1 eV and (a) ϵ = 5.9eV (b) and with
ϵ = 0.01eV (just to make the parabolic shape of the band gap more explicit) near the K points.
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B. Low Energies Regime

In the low energy regime, around the K points, i.e within [K− p,K+ p] with p → 0, we can expand the ... as

γK+p =
∑
⟨j⟩

e+i(K+p)·(δj+δ1)

= e+i(K+p)·δ1

∑
⟨j⟩

e+iK·δje+ip·δj

≈ (...)
∑
⟨j⟩

e+iK·δj (1 + ip · δj)

= (...)
∑
⟨j⟩

e+iK·δj + ip ·
∑
⟨j⟩

e+iK·δjδj (IV.12)

As we already saw, we have that

∑
⟨j⟩

e+iK·δj = eiK·δ1 + eiK·δ2 + eiK·δ3

= e
i 2π
a0
( 2

3 ,0)·
a0√
3
(0,1)

+ e
i 2π
a0
( 2

3 ,0)·
a0√
3

(
−

√
3

2 ,− 1
2

)
+ e

i 2π
a0
( 2

3 ,0)·
a0√
3

(√
3

2 ,− 1
2

)
= ei0 + e−i 2π

3 + e+i 2π
3

= 1 + 2 cos(2π/3)

= 1− 1 = 0 (IV.13)

And thus

γK+p = ip ·
∑
⟨j⟩

e+iK·δjδj

= ip · a0√
3

(
ei0(0, 1) + e−i 2π

3

(
−
√
3

2
,−1

2

)
+ e+i 2π

3

(√
3

2
,−1

2

))

= ip · a0√
3

(
(0, 1) +

(√
3

2

[
e+i 2π

3 − e−i 2π
3

]
,−1

2

[
e+i 2π

3 + e−i 2π
3

]))

= ip · a0√
3

(
(0, 1) +

(√
3

2
2i sin(

2π

3
),−1

2
2 cos(

2π

3
)

))

= ip · a0√
3

(
(0, 1) +

(
√
3i

√
3

2
,−(−1

2
)

))

= i (px, py) ·
a0√
3

3

2
(i, 1)

= −
√
3a0
2

(px − ipy) (IV.14)
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Substituting in the Hamiltonian yields

HK+p =

[
ϵ −tγK+p

−tγ†
K+p −ϵ

]
=

[
ϵ t

√
3a0

2 (px − ipy)

t
√
3a0

2 (px + ipy) −ϵ

]

=

[
ϵ 0
0 −ϵ

]
+ t

√
3a0
2

[
0 px − ipy

px + ipy 0

]
= ϵ

[
1 0
0 −1

]
+ t

√
3a0
2

(
px

[
0 1
1 0

]
+ py

[
0 −i
i 0

])
= ϵ

[
1 0
0 −1

]
+ t

√
3a0
2

(
(px, py) ·

([
0 1
1 0

]
,

[
0 −i
i 0

]))
(IV.15)

If can invoke the Pauli matrices

σ = (σx, σy, σz) where



σx =

[
0 1

1 0

]

σy =

[
0 −i

i 0

]

σz =

[
1 0

0 −1

] (IV.16)

We can rewrite the Hamiltonian (IV.15) in terms of them as

HK+p = ϵσz + t

√
3a0
2

(p · σ) (IV.17)

Clearly, the Hamiltonian (IV.17) resembles the Dirac Hamiltonian in two-dimension,

HDirac = σzmc2 + c (p · σ) (IV.18)

where m is the rest mass and c is the speed of light. We can now work backwards and calculate the band structure
by �nding the eigenvalues of the Hamiltonian HK+p. We obtain

0 = det (HK+p − EK+p1)

=

∣∣∣∣ ϵ− EK+p vF (px − ipy)
vF (px + ipy) −ϵ− EK+p

∣∣∣∣
= E2

K+p − ϵ2 − v2F
(
p2x + p2y

)
= E2

K+p −
(
(me�v

2
F )

2 + v2F p
2
)

(IV.19)

The eigen energies are

EK+p(p) = ±
√

p2v2F +m2
e�v

4
F (IV.20)

which is exactly one would aspect. Notice that, for the case of graphene, the term ϵσz in (IV.17) would not appear
since the band gap is zero. This implies that, for low energies, electrons behave as if they are massless.
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V. HBN DENSITY OF STATES

A. Analytical Evaluation for Low Energies Regime

Consider, in reciprocal space, the plane kxky, discretized into small intervals of allowed momentum kx and ky. The
volume of each small interval is then given by

∆k =
(2π)2

A
(V.1)

where we A is the area of the hexagonal Brillouin unit cell. The number of states per area is given by

N (k) =
1

A

πk2

∆k
=

1

4π
k2. (V.2)

If we account for the spin degeneracy (×2) and for the valley degeneracy (×2) of the K± points, we instead obtain

N (k) =
2

π
k2. (V.3)

Given the low energy energy dispersion expressed in equation (IV.20) we have that

k2 =
1

v2F

(
E2 − ϵ2

)
(V.4)

And thus, the number of states in terms of the energies is given by

N (E) =
2

π

1

v2F

(
E2 − ϵ2

)
(V.5)

Notice that, given the bandgap ϵ there is certainly no states for energies below E < ϵ. The density of states, being
the number of states per energies per area, is then de�ned as

DoS (E) =
dN (E)

dE
(V.6)

and thus

DoSK+p (E) =
4

π

1

v2F
E, E /∈ [−ϵ,+ϵ] (V.7)

B. Numerical evaluation for all energies

In this section, we show the relevant bits of a possible numerical implementation of the hBN density of states in
the programming language Julia. Since the code is self-explanatory we will not make any extra regards concerning
the implementations. However, in the oral presentation, a discussion will be made. [If one wishes to obtain the full
code or a detailed explanation, refer to franciscolobo1880@gmail.com]
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Figure 3. Building the reciprocal lattice grid. Numerical implementation of the k points within the �rst Brillouin zone.

Figure 4. Brillouin zone grid built from the reciprocal basis vectors b1 and b2.
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Figure 5. Calculating all the possible energies. Numerical implementation of the energy spectrum within the �rst Brillouin
zone.

Figure 6. Counting the Number of States. Numerical implementation of the energy spectrum within the �rst Brillouin
zone.



15

Figure 7. Numerical results for the hBN density of energy states. The bandgap region [−ϵ,+ϵ] is depicted in gray. As expected,
the density of energy states is zero within this region. Furthermore, for energies |E/t| > 3, we also have a null density of energy
states since the two depicted band cap at those energy levels [as one seen also in Fig(1)]


