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I. INTRODUCTION

Hexagonal Boron Nitride (hBN) is a 2D material composed of a simple sheet of alternating boron and nitrogen
atoms organized in a planar honeycomb lattice. hBN shares a lot of similarities with the infamous Graphene, also
a 2D honeycomb structure but composed only of carbon atoms, although hBN has a slightly larger lattice constant
ap = 2.5A (about 1.8%). However, the most relevant distinction is that graphene behaves as a semi-metal with a
zero-gap at its massless Dirac points while hBN, due to the electric repulsion between the boron and nitrogen atoms,
behaves as a semiconductor and has an opening gap of about € =5.9¢eV at its Dirac points.

II. HBN DESCRIPTION IN POSITION SPACE
A. Position Space Lattice

As shown depicted in figure (1), hexagonal boron nitride (hBN) is composed of boron (depicted in red) and nitrogen
(depicted in blue) atoms disposed in a two-dimensional honeycomb lattice, with a lattice constant of ag. This
honeycomb lattice can be described as a triangular Bravais lattice (depicted in gray shading) generated by the vectors

basis
1 V3
al; = Qo (2, 2) s (II].)

az = Qo (—;, 3) (112)

A generic lattice vector R can then be written as
R = nja; + nsao, where ny,n, € Z (I1.3)

ol%

such that, a generic function f(r) follows the periodicity of the lattice, this is

F(r+R) = f(r). (IL4)

In each unit cell (depicted by the dashed black line), we have one atom of boron and one atom of nitride, which we
designate as sub-lattices A and B, of respective positions

sa = (0,0), (I1.5)

_ %0
sp.= —2(0.1) (IL6)

For each site A, the first nearest neighbors of type B are given by

(0,1) (IL7)

P — <—\/§ —1> (IL8)

5, = 20 <V§ 1) (IL.9)

B. Position Space Tight-Binding Hamiltonian

We can write this system’s total Hamiltonian in real position-space and in second quantization as

H=Hj+ Hg + Hyop (I.10)
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Figure 1. (a) Honeycomb lattice structure of hBN constructed by two superposed triangular sub-lattices A (red atoms ) and
B (blue atoms). The vectors a; and as are the lattice unit vectors and 1, d2 and 3 are the nearest-neighbor vectors. (b)
Corresponding Brillouin zone. The Dirac points are located at K+ and K. The dashed red and blue lines represent the shift
of the Brillouin zone from a hexagon shape to a rectangular shape.

where

Hy = eaal(R)a;(R) (I1.11)

i

is the free-particle Hamiltonian of the boron atoms in sites A an, a;/ aZT the ladder operators in a given site 1.
Analogously,

Hp = epbl(R)bi(R) (11.12)

is the free-particle Hamiltonian of the nitrogen atoms in sites B. Notice that, contrarily to graphene, since the atoms
on sites A and B are different, the free-particle energies €4 and ep are inherently different. At last, the term

Hiop = Y ti;(R) (al (R)b;(R) + b} (R)as(R)) (11.13)

is the interaction Hamiltonian between neighboring sites ¢ and j describing the possible hoppings from site B to site
A and vice-versa. Considering only first neighbors, and since the surrounding atoms are all the same, the hopping
terms is given by a constant term and can be pulled out of the sum, i.e ¢; ;(R) — —t. We have

Hyop = —t Y _ (af(Ri)b(R; + 8;) + b (R;)a(R; — 5;)) (I.14)
(i:3)
where we denote that we are only dealing with first neighbors with (7, j) (although it’s redundant since we are already

specifying the first neighbors with +4;). Substituting back into (I1.10), and making the site i explicit instead on the
position R [i.e a;(R) = a(R;)], the total Hamiltonian yields

H=> esa'(Ri)a(R;) + > epb (R)b(R;) —t Y (al (Ri)b(R; +6;) + b (R;)a(R; — §;))  (IL15)
i i (i,5)




III. HBN DESCRIPTION IN RECIPROCAL SPACE
A. Reciprocal Space Lattice

Given the lattice periodicity described in (I1.4), we can express a generic function f(r) in reciprocal space as a
Fourier series

) = 3 et £(k) (IIL1)
k

where, given (11.4),

Ze+iG~rf(k) — Ze+iG~(r+R)f(k>

k k

= G- R =2mn, where n € Z (I11.2)

This holds true if, for a given reciprocal space translation,

G = n1by + nabs (I11.3)
the two reciprocal basis vectors are such that
1
ai by = oy (IIL4)
Thus, one choice of basis is
by = 27 (Rogea) = jg (~v3.-1) (I1L5)
by = 27” (Rogoar) = \/?% (—\/é, +1) (I1L6)

where Rggo is a 90° rotation matrix and V is the volume of the unit cell,

V =la; - (Rypea) | = @ (IIL.7)
We obtain
by — T (_3, —1) (IIL.8)
V3ag
by = \%7;0 —\/§,+1) (IIL9)




The volume is given by
V = |a; - (Rgpeas) |
_ |20 1 . 0 —1|a| —1
T2 V3] 10 |2[V3
e L] [-v3
T4 | V3 —1
= |-2(v3+ V3)|
_ \/‘Zao 5 (II1.10)
and the reciprocal basis vectors as
2w 4
b, = — cay) = — (— -1 II1.11
1 vV (Rggeaz) \/gao ( \/ga ) ( )
and
2w 4
by = 21 o)) = — 1 I11.12
2= 5 (Rggear) 3 ( V3, + ) ( )

B. Reciprocal Space Tight-Binding Hamiltonian

We can represent the total Hamiltonian (I.15) in reciprocal space, expressing the ladder operators a/a’ and b/b
in a Fourier series given the respective periodicity s4 and sp. This is

1 .
a(R;) = —= Z etike(Bitsa)g (k) (IT1.13)
VV 4
1 .
b(R;) = —= » etk Ritsnlp(k) (IT1.14)
VV 4

Substituting (IT1.13) and (II1.14) into (II.15) yields

H=> eaa (Ri)a(R;)+ Y epbl (R)b(R;) —t > (al(R)bR; + 8;) + b (Ry)a(R; — 5;))
i i (i,5)

_ %ZEA <Z eik~(Ri+sA)aT(k)> <Z €+¢k’.(Ri+sA)a(k/)>
i k

Kk’

1 —ik-(R;+sp)pt +ik’-(R;+sp) /
+ N % €B (gk e b' (k) Ek/ e b(k")

1 —ik-(Ri+sa) T +ik’-(R;+6;+sp) /
—Nt§:<§k:e Ritsa)gl(k) | [ D et 2)p(Kk')

(6:3) k!

+ (Z e~k (Ritsp)pt (k)) (Z 6+ik"(Rz‘5j+SA)a(k/)> (I11.15)
k

k’

Given the identity

S(k—k)= % D e Relerk) (I11.16)
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we can rearrange (II1.15) to make (II1.16) explicit. It follows that

H=Y" <NZ ~iRe-(e- ) “ma k) g (Ka (k)

K.k’
+2 (N D e ety ) e~ =0 (KD e ppf (K)b(K')
K,k
1 —iR;-(k—K’) —ik-sa +ik'-8; +ik'-sp) 1 /
tZ(NZe (e e e )a(k)b(k)
k,k’ i
_ —iR;-(k—K’) —ik-sp ,—ik'-8; +ik'-sa ) pt /
£y (N Se ) 4 (e e e )b (K)a(k') (IIL.17)
k,k’ (4
and thus
H =Y eaal(ka(k') + > epbl(k)
k k
—t)] (Z e*“‘"‘”‘*”‘”’) af (1)b(k)
k A\ ()
- tz (Z (8 +sp- SA>) b (k)a(k) (I11.18)
(4)
Notice that, given the definition of s4 and sg, we have that sg — sy = d;. We define a new operator
Y=y et Oito), (IT1.19)
(9
re-express (I11.18) in terms of it. The Hamiltonian in momentum space is then given by
H=Y"ca®al (®a(k) + 3 en k)bl (k)b(k) - tz ('Yka k) +7ibf (k)a(k )) . (I11.20)
Kk k
We can rewrite the system’s Hamiltonian in matrix form as
H= Zc )Hice(k (II1.21)
where we defined a new composite state and a new Hamiltonian as
a(k) €A —tyk ]
c(k) = and Hy = . I11.22
=5 B (111-22)
'Lnt - Z (& ch
—t | | a(k)
oo ]2 28]
2[ () B0 ]| s || b0
_ (k) ] { eAa( ) — tyicb(k) }
4 (k) + e5b(k)
=y ( a(k) + ep (k)b K)b(K) — tycal (K)b(K) — tr{b (K)a(k)) o (IT1.23)
k




IV. HBN BAND STRUCTURE
A. Finding the Eigen-Energies

To calculate the band structure we first need to find the eigenvalues of the Hamiltonian Hy. This is an easy task
since it’s just a 2x2 matrix. We obtain

0 = det (Hk — Ek]l)
€ea—Ex  —tn

o —tvli e — By
= (€4 — Ex) (€5 — Ex) — t*|nc|?
:€A€B_(€A+€B)Ek+Ei_t2"Yk‘2 (IV.l)

and thus

1 1
Fy = 5 (EA +€B) + 5\/(6,4 +€B)2 —4(€A€B —t2|’yk|2)

2
:(GA—;eB>i\/<€AgeB> 22 (IV.2)

In frequency space, |yi|? is given by

|2 = Z etik (8;+81) Ze—ik'(sjﬁal)
(G (")

_ (e+ik~51 +e+ik~62 + e+ik~53) e+ik~¢51 (e—ik~51 4 e—ik~52 4 e—ik~53) e—ik‘él

— (6+ik~51 4 e+ik-52 + 6+ik~l§3) (efik-él 4 e*ik-(SQ 4 e*ik-(s;:,)

=1+ etk (81—62) + etk (81-83) + o tik (82—81) +14 etk (82—853) + etik (83—81) + o ik (83—82) +1
— +’Lk(51—52) —Zk(51—52) +7,k(51—53) —Zk(61—63) +’Lk((52—53) —zk(62—63)
3+ (e +e + e +e + (e +e
=3+ 2cos(d; — d2) + 2cos(d1 — d3) + 2cos(dz — d3) (IV.3)
Given the definition in (II.7), (I1.8) and (I1.9) we have
Ii|> = 3 + 2cos (% {kz + \/gk‘y]) + 2cos (% [—k‘m + \/§RUD + 2 cos (—agk,) (IV.4)
Using the identity

cos(a + b) + cos(a — b) = (cosacosb — sinasinb) + (cos a cos(—b) — sinasin(—b))
= (cosacosb — sinasinb) + (cosacosb + sin a sin b)
= 2cosacosb (IV.5)

we obtain
3
Yk 2 =34 4cos @km cos Mk + 2 cos (apks IV.6
2 2 Y

Substituting (IV.6) directly into (IV.2) yields

2
+ -
B (ke ky) = (GA 5 GB) + <6A 5 63) + 2

ag

3+ 2cos (apky) + 4 cos (Cl();/gky> cos (21471)] . (Iv.7)

Notice that, if €4 = ep, as is the case for graphene, the term ((e4 — €g)/2)? is zero and the band gap closes at the so
called Dirac points (for reason we will see later),
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Kt = —.0 IV.8
(+50) v g

4
K =(—-—.0 IV.9
( = ) (Iv.9)

since

3
0=3+2cos (agKF) +4cos (aog/_K;t> cos (%Kf)

2m 2
=3+ 2cos (iaoﬁg) + 4 cos (0) cos <:|:7a—0§)

=34 2cos(£(r/3+ 7)) + 4cos (£(m — 7/3))
=3 —2cos(n/3) —4cos (m/3)
1 1
=3-1-2
=0 g (IV.10)

On the other hand, in the case for hBN, at this K points we have a band of (¢4 +€5)/2 = 0. It has been demonstrated
that this indirect-gap semiconductor has a band-gap of e = 5.95 eV. If we define the zero energy point at (ea—€ep)/2 =€
such that e4 = € and €4 = —e we obtain

EE(kg,ky) = 4, | €2 +12 |3 4+ 2cos (agks) + 4 cos (aog/gky> cos (a—;km)] . (Iv.a)
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Figure 2. hBN band structure within the first Brillouin zone with parameters ¢ = 1 €V and (a) ¢ = 5.9¢V (b) and with
€ = 0.01eV (just to make the parabolic shape of the band gap more explicit) near the K points.




B. Low Energies Regime

10

In the low energy regime, around the K points, i.e within [K — p, K + p] with p — 0, we can expand the ... as

icrp = 3 eHUICHD)(@545)
)

_ e+i(K+p)-51 Z e+iK-6j e+ip-6j
(4)
~ ()Y et (14ip - 4))

(4)
= ()Y et pip. Y TG, (IV.12)
(9 (9
As we already saw, we have that
ZeJriK-(;j — 6iK~51 +6iK-62 +eiK-63
()
— ei%(%’o)'%(ul) _|_ ei%(%p)'%(i%’*%) + ei%(% 0) L\/%(? 7%)
e
=1+ 2cos(27/3)
=1-1=0 (IV.13)
And thus
Yrip =ip- Y e
()
_ag [ 4 2 V3 o1 iz (V31
p \/§< (0,)+€ 3( 27 +€ 3 27 2
. ag V3 +i2x iz ] L[ ogg2m —i2r
=1ip 3((0,1)4—(2{6 e }, 2[@ 3 te 3}
3 2 1 2
—ip- % <(0,1) + <\2[2isin(;),—22 s(;)>>
. ag V3 1
= — 1 — — —
ip- ((o, )+ (ﬁ . 2)))
(7)) 3 .
S0 21
erry) 55 1)
V3a .
=~ (pa — ipy) (IV.14)



Substituting in the Hamiltonian yields

11

€ —tVK+p ]
H =
K+p t’y;r(er —€
— € t\/§2a0 (pL - ipy)
| tY3% (p, +ip,) —e
_[eo0 —|—t\/§a0 0 Pa — ipy |
N L 0 —e 2 Dz + ipy 0 ]
[1 0 V3ag 01 0 —i
Lo hleege Vo] on [T o))
10 V3ag 01] [0 —i
If can invoke the Pauli matrices
[0 1
ox =
10
[0 —i
o = (03,04,0,) where v=1. 1 (IV.16)
(1 0
o, =
0 -1
We can rewrite the Hamiltonian (IV.15) in terms of them as
3
Hgyp =€0, + t\[;o (p-o) (IV.17)
Clearly, the Hamiltonian (IV.17) resembles the Dirac Hamiltonian in two-dimension,
Hpirae = 0,mc® + ¢ (p-o) (IV.18)

where m is the rest mass and c is the speed of light. We can now work backwards and calculate the band structure

by finding the eigenvalues of the Hamiltonian Hk . We obtain

0 = det (Hk1p — Expl)

€ — EK+p
vr (pz + ipy)
2

_ 2
= Eiip — €

The eigen energies are

vp (Do — ipy)
—e— Exip

— v (p2 +12)

= Ef<+p — ((megv})? + vip?)

(IV.19)

Exip(p) = £1/p*0F + mgvp

|

(IV..20) ]

which is exactly one would aspect. Notice that, for the case of graphene, the term eo, in (IV.17) would not appear
since the band gap is zero. This implies that, for low energies, electrons behave as if they are massless.
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V. HBN DENSITY OF STATES
A. Analytical Evaluation for Low Energies Regime

Consider, in reciprocal space, the plane k,k,, discretized into small intervals of allowed momentum k, and k,. The
volume of each small interval is then given by

(2m)*
Ak = V.1
o (v.1)
where we A is the area of the hexagonal Brillouin unit cell. The number of states per area is given by
N(k)_lﬁ_i]g (V.2)
ANk 4An )

If we account for the spin degeneracy (x2) and for the valley degeneracy (x2) of the K* points, we instead obtain
2.0
N(k) = ;k . (V.3)
Given the low energy energy dispersion expressed in equation (IV.20) we have that

k* = vll% (E? —€) (V.4)

And thus, the number of states in terms of the energies is given by

N(E) = s (E? — €% (V.5)

Notice that, given the bandgap e there is certainly no states for energies below F < e. The density of states, being
the number of states per energies per area, is then defined as

_ dN(E)
DoS (E) = = (V.6)
and thus
41
DoSk4p (E) = == E, E ¢ [—¢,+€] (V.7)
T UE

B. Numerical evaluation for all energies

In this section, we show the relevant bits of a possible numerical implementation of the hBN density of states in
the programming language Julia. Since the code is self-explanatory we will not make any extra regards concerning
the implementations. However, in the oral presentation, a discussion will be made. [If one wishes to obtain the full
code or a detailed explanation, refer to franciscolobo1880@gmail.com]|



(2*i - Nkpts - 1)/(2Nkpts) * bl + (2*j - Nkpts - 1)/(2Nkpts) * b2

push!(kpts, k)

1 function kgrid(Nkpts, bl, b2)
2
3 kpts = Vector{Float64}[]
4
5 for j in 1:Nkpts
6 for i in 1:Nkpts
7
8 k =
9
10
11
12 end
13 end
14
15 return kpts
16 end
17

18 # where k is defined in the mean points

kgrid (generic function with 1 method)

1 # with the reciprocal basis vector being:
= (4n/sqrt(3))*[-sqrt(3), -11;
= (4n/sqrt(3))*[-sqrt(3), +11;

2 bl
3 b2

Figure 3.
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Building the reciprocal lattice grid. Numerical implementation of the k& points within the first Brillouin zone.
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Figure 4. Brillouin zone grid built from the reciprocal basis vectors by and bs.
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const €
const t
const a@

[Ny N
nonon
]

E(k) = sgrt( €2 + t*2 * ( 3 + 2*cos( a@ * k[1] ) + 4*cos( a@*sqrt(3)/2 * k[2] ) * cos( a®/2 * k[1] ) ) );

[FYR N

# where k is a vector from the grid

function bandstructure(kpts)

Nkpts = length(kpts)
band = zeros(Nkpts)

for (i, k) in enumerate(kpts)
band[i] = E(k)

L= IV, I S VW

end

return band

[
NRE G oo

end

14 # returns a matrix with the values of E(kx,ky) for every k in the grid

bandstructure (generic function with 1 method)

Figure 5. Calculating all the possible energies. Numerical implementation of the energy spectrum within the first Brillouin
zone.

1 function DoS(Emin, Emax, dE, bandstructure)
2
3] MEpts = Int(cld(Emax - Emin, dE))
4
5 dos = zeros(NEpts)
7 for (i, Ei) in enumerate(range(Emin, Emax, length = NEpts))
8
9 dos_Ei = @
10
11 for Ekn in bandstructure
12
13 if Ei - dE/2 < Ekn <= Ei + dE/2
14
15 dos_Ei += 1
17 end
18
19 end
20
21 dos[i] = dos_Fi
22
23 end
24
25 return dos
26 end

DoS (generic function with 1 method)

Figure 6. Counting the Number of States. Numerical implementation of the energy spectrum within the first Brillouin
zone.
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Figure 7. Numerical results for the hBN density of energy states. The bandgap region [—¢, +¢] is depicted in gray. As expected,
the density of energy states is zero within this region. Furthermore, for energies |E/t| > 3, we also have a null density of energy
states since the two depicted band cap at those energy levels [as one seen also in Fig(1)]



