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PREFACE

This book originates from the foundational work undertaken during my Master's thesis, entitled
"TITLE", wherein the initial years of study were primarily devoted to the core topics presented
herein. As such, the structure and substance of this text mirror the intellectual journey of a grad-
uate student encountering the �eld of superconductivity for the �rst time. This was written from
a PhD student point-of-view with the intention of guiding fellow PhD students (or any early-career
researchers) through the essential theoretical frameworks that form the backbone of both conventional
and emerging theories of superconductivity. The material is deliberately presented in an expository
and intuitive manner, prioritizing physical insight and conceptual clarity over rigorous mathematical
derivation. This stylistic choice re�ects the pedagogical aim of the book. I wish not to exhaustively
cover each subject, but to serve as an accessible entry point into concepts that are often referenced
but rarely unpacked in detail within advanced literature. Accordingly, this work is best viewed as a
primer, one that provides a conceptual map and intuitive sca�olding for readers new to the �eld, while
simultaneously functioning as a compact memory aid for those revisiting these topics. Researchers
requiring deeper or more specialized knowledge are encouraged to consult the original papers, which
are dully noted at the beginning of each section (note yet though), that rigorously address each subject
in its full technical detail.
The rest of the preface will be written when the book is mostly �nished.
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ONGOING RESEARCH ENDEAVORS

I intend to compose various paragraph detailing the research endeavors of my fellow colleagues
pursuing studies in the �eld of topological superconductivity. This exposition will serve as a repre-
sentative landscape of current investigative directions within the �eld, as re�ected through the diverse
yet interrelated topics being explored by peers in the discipline.
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Part I

Introduction to topological superconductivity
I. CONCEPTS OF SYMMETRY AND TOPOLOGY

Topology studies whether objects can be transformed continuously into each other. In condensed
matter physics we can ask whether the Hamiltonians of two di�erent systems can be continuously
transformed into each other. If that is the case, then we can say that two systems are `topologically
equivalent'.
In order to understand the concept of topology in condensed matter in the simplest way possible

let us consider the transformation of a system described by the Hamiltonian H by the tuning of some
external parameter α such that at Hi ≡ H(α = 0) is the initial state Hamiltonian and Hf ≡ H(α = 1)
the �nal. Understand that the transformation of H most be physical, meaning that it should be just a
matter of point of view. Because of this, not only mustH be an hermitian matrix, i.eH = H† (such that
it has real eigenenergies), but also that any transformation must be isometric (aka norm-preserving)
isomorphisms (aka one-to-one mapping). Due to Wigner's theorem these transformations can either
be unitary U or anti-unitary Ū . A unitary transformation between two inner product spaces reads as
⟨Uφ|Uψ⟩ = ⟨φ|ψ⟩ while an anti-unitary transformation reads instead as

〈
Ūφ|Ūψ

〉
= ⟨φ|ψ⟩∗ = ⟨ψ|φ⟩.

Of course, any anti-unitary operator can be written as the product of a unitary operator and the
complex conjugation operator K.
Unitary transformations
Unitary transformations do not have particularly interesting consequences for topological classi�ca-

tion. Consider an Hamiltonian H with the symmetry constraint U†HU = H. See that H commutes
with U meaning that the system has a conservation law, and that the Hamiltonian can be brought to
a block-diagonal form

H =

(
H(1)

H(2)

)
,with H(n) =

(
h11 h12
h∗12 h22

)
. [1]

This procedure can be repeated until one runs out of unitary symmetries and is left with an irreducible
block of the Hamiltonian, i.e. one which cannot be block diagonalized. In this case, every one of those

H(n)
i Hamiltonians at the n block-diagonal could be continuously deformed into H(n)

f , meaning that
they are always topologically equivalent.
Introduction to CPT symmetries
One the other hand, anti-unitary transformations do impose constraints on an irreducible Hamilto-

nian, for example, by forcing it to maintain a (physically) �nite energy gap, or to be a real matrix,
or to be block o�-diagonal. In this case, telling if Hi and Hf are topologically equivalent is not triv-
ial. There are three fundamental discrete symmetries: chiral symmetry (CS) C, parity symmetry P,
time-reversal symmetry (TRS) T , known collectively as CPT symmetry. In a condensed matter pic-
ture, we often refer to the chiral symmetry as being a sublattice lattice and the parity symmetry as a
particle-hole symmetry (PHS). Sublattice symmetry means that our system can be naturally split into
two interpenetrating sublattices. The Hamiltonian connects only sites from these di�erent sublattices
and, as a result, it anticommutes with an operator that distinguishes between them. Particle-hole
symmetry means that for every electronic state with energy ε there is a corresponding electron-hole
(as in absence of an electron) state, at −ε. Hence, mirroring the electron's occupancy along the Fermi
level, meaning that occupied becomes unoccupied and vice versa, the spectrum remains unchanged.
Finally, time reversal symmetry means that our system would have behave the same if time �own
backwards. In this backward time frame momentums change sign and spins �ip.
There is, however, an important detail: both T and P are indeed anti-unitary transformations but

C is not. This is because whenever a system has both TRS and PHS there is also a chiral symmetry
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C = PT . This also means that if a system only has either but not both, it cannot have a chiral
symmetry. In other words, the presence of any two out of the three symmetries implies that the third
is also present. Since the product of two anti-unitary operators is a unitary operator then C must be
unitary. Also, see that if both TRS and PHS are absent, then CS may or may not be present. In
these two situations, formally known as classes, there are no anti-unitary symmetries, furthering their
classi�cation to complex classes.

Another important detail is that for TRS we have that [H, T ] = 0 while for PHS we have that
{H,P} = 0. By implication of what we just talked, also {H, C} = 0.

Furthermore, as the next and �nal note about this symmetries, know that TRS and PHS may come
in two separate �avors, depending on whether they square to plus or minus one. So, for example, a
system can behave in three ways concerning TRS: (1) it does not have TRS, (2) it has it and T 2 = +1
(3) it has it and T 2 = −1. On the other hand, the chiral symmetry only comes in one �avor, C2 = +1
. Due to �avor combinations we �nd a total of 10 distinct symmetry classes displayed in �gure [1].
The classi�cations Z, 2Z and Z2 on the left are to be introduced in the following examples.

Figure 1. Symmetry periodic table with Altland-Zirnbauer classi�cation. For more details on this table,
for example, on how to go from d = 0 to d > 0 by adding and removing symmetries and it's Boot
clock patterns see Akhmerov's "10 symmetry classes and the periodic table of topological insulators" at
https://topocondmat.org/w8_general/classi�cation.html.

It is important to have in mind that CPT symmetries may not be the only symmetries at play.
Although these are the fundamental symmetries, if one works within a condensed matter framework, the
underlying lattice will provide additional, often spatial, symmetries. These include, for example point
group symmetries�inversion, mirror, and rotational symmetries�, and space group symmetries�
translation, glide, or screw symmetries of the entire crystal lattice. Point group symmetries protect
additional degeneracies or enforce selection rules that are not captured by the non-spatial discrete
symmetries alone, for example, a mirror symmetry in a crystal that protects gapless modes on certain
surfaces or edges that are invariant under re�ection. One the other hand space group symmetries
constrain the electronic band structure and can lead to phenomena like Dirac or Weyl points that
interact with the superconducting pairing.

https://topocondmat.org/w8_general/classification.html
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A. Introduction to topological invariants in 0D models

In order to study the e�ects of these symmetries, let us imagine a panoply of di�erent systems
and their energy spectrums as a function of α. Moreover, let us count the number of levels below
zero energy (de�ned at the Fermi level εF ) at each di�erent α, denoting it with Q. This will be our
topological invariant prototype. If Q is the same in the initial and �nal system and did not change
along the tuning of α then there must be a continuous transformation Hamiltonian which does not
close the gap. One the other hand, if Q changes then the system are not topologically equivalent as
it would be needed to close the (physically real) gap. Hence, such a crossing changes the topological
invariant, dubbed topological phase transition.

For all the examples that follow we assume a zero-dimensional (d = 0) system. In a condensed
matter realization this could be, for instance, a quantum dot interaction will all kinds of external
systems. This will become

Figure 2. Kitaev chain Majorana modes pairing possibilities tbh I still don't fully undestand why I can't just
change the Fermi energy? I mean, for the spinful TRS I could only get 0 or 2 still. Does the spectrum of the
CS and PHS just translate along with εF while the unitary does not?

1. Time-reversal symmetry

Time-reversal symmetry is represented by an anti-unitary operator, and as such it can always be
written as the product T = UK with U an unitary matrix and K complex conjugation. A real
Hamiltonian is a manifestation of time-reversal symmetry.

Spinless case
For example, for a spinless system we have T = K and thus T HT −1 = H∗ = H is a real matrix.

In this case the TRS �avor is positive i.e T 2 = +1. Still, this case is also not interesting because
is not di�erent from the previous one, the di�erent energy levels move and the topological invariant
changes by one when one of them crosses zero. In this trivial case the topological invariant is an integer
number, Q = 0,±1,±2, . . . ∈ Z. I mean, it should be N no? How would the negative numbers appear?

Spinful case
There is, however, a very important case where time-reversal symmetry makes a real di�erence. For

a 1/2-spin system we the time-reversal operator reads

T = iσyK [2]
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with σy = [ 0 −i ; +i 0 ] the 2nd Pauli matrix (we reserve σ for Pauli matrices in spin orbital space).

In this case the �avor is negative, i.e T 2 = −1, and

T HT −1 = σyH∗σy = H [3]

meaning that every energy eigenvalue ε is doubly degenerate. This happens because both the electrons
with spin up or down have the same eigenenergy. This doubly degeneracy is often refer to as Kramers'
degeneracy. Such a Hamiltonian would read in matrix form as

H =

(
ε11 M

M† ε21

)
=


ε1 0 m11 m12

0 ε1 −m∗
12 m∗

11

m∗
11 −m12 ε2 0

m∗
12 m11 0 ε2

 . [4]

with ε1, ε2 real numbers.

We can see the consequences of Kramers' degeneracy on the band spectrum versus α in �gure [2].
While the spectrum looks quite similar to the previous ones, whenever a line crosses zero energy, our
topological invariant makes a jump of two, and not one! In this case, time-reversal symmetry constrains
the topological invariant to only take even values,

Q = 0,±1,±2, . . . ∈ 2Z. [5]

This is an example of how topological properties can be in�uenced by discrete symmetries.[1]

2. Sublattice symmetry

We just saw that time-reversal symmetry can forbid the topological invariant to take a certain set of
values. We now study another case where a symmetry changes the topological properties dramatically.

Let's now take a system where we can split all the degrees of freedom into two groups�group A
and group B�, such that the Hamiltonian only has nonzero matrix elements between two groups, and
not inside each group. This situation arises naturally when the a given lattice has two sublattices.
For example, for hexagonal boron nitrate (hBN) we can distinguish these sublattices as the boron and
nitrogen sites respectively. The matrix of such an Hamiltonian would read

H =

(
M

M†

)
=


0 0 m11 m12

0 0 m21 m22

m∗
11 m∗

21 0 0

m∗
12 m∗

22 0 0

 . [6]

See that ηzHηz = −H where ηz = [ +1 0 ; 0 −1 ] is the 3rd Pauli matrix (we reserve η for Pauli

matrices in sublattice orbital space). This immediately means that if Ψ = [ ψA; ψB ]T is an eigenvector

of the Hamiltonian with energy ε , then [ ψA; −ψB ]T is an eigenvector with energy −ε . A symmetric

spectrum is the consequence of sublattice symmetry as seen in �gure [2]. This means that Q always
stays constant and that we can always deform Hamiltonians with sublattice symmetry without closing
the gap. This indicates that an extra symmetry, such as this one, may render the topology of a system
as trivial.
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3. Particle-hole symmetry

Another symmetry that has a strong in�uence on topology is the particle-hole symmetry, showing
up in superconducting systems. As we saw in BCS theory, a superconductor will create(annihilate)
pairs of electrons by breaking(forming) Cooper pairs costing a pairing energy of ∆ to the system.
Let us consider that the dynamics of the electrons is described by the an hermitian H matrix

while the pair creation and annihilation is described by an antisymmetric ∆ matrix. Understand that
∆ must antisymmetric just because because the fermion operators anticommute. The Hamiltonian
describing the full system reads

H =

(
H ∆

−∆∗ −H∗

)
=


h11 h12 0 ∆

h∗12 h22 −∆ 0

0 −∆∗ −h∗11 −h∗12
∆∗ 0 −h12 −h∗22

 [7]

and is know as the Bogoliubov-de Gennes (BdG) Hamiltonian. Moreover, we now double the amount
of degrees of freedom in the system by de�ning a Nambu spinors

č†i =
(
c†i ci

)
and či =

(
ci
c†i

)
[8]

such that we can write

Ȟ =
1

2
č†Hč.

This de�nitions indicates that the Bogoliubov-de Gennes Hamiltonian acts not only on electrons but
also on an extra mirror set comprised of eletron-holes. Since holes are related to the electrons, H
automatically inherits that extra symmetry. This symmetry exchanges electrons with holes, and has
an anti-unitary operator P = τxK with τx = [ 0 1 ; 1 0 ] the 1st Pauli matrix (we reserve σ for

Pauli matrices in spin orbital space) and (as before) K complex conjugation. Hence we have that
PHP−1 = −H. For this speci�c case it's �avor is positive, i.e P2 = +1. Indeed, for every eigenvector
Ψ = [ u; v ]T with energy ε, there will be a particle-hole symmetric eigenvector PΨ = [ v∗; u∗ ]T with

energy −ε. As clearly seen in �gure [2], because of the minus sign in the particle-hole symmetry, the
spectrum of H must be mirrored around zero energy, that is, the Fermi level).
Fermionic parity switches
See that this spectrum mirroring was also the case for sublattice symmetry however, in this case,

energy levels do not repel around zero energy, so that crossings at zero energy appear. Unlike in the
case of sublattice symmetry, a pair of ±ε energy levels does not corresponds to two distinct quantum
states, but to a single quantum state. This quantum state is a coherent superposition of electrons
and holes, a so called Bogoliubov quasiparticle. It has an excitation energy ε, and it is created by an
operator γ† = uc† + vc. Populating the partner state at energy ε is the same as emptying the positive
energy state.
In general a crossing between energy levels happens in the presence of a conserved quantity. While

the mean-�eld Hamiltonian of a superconductor does not conserve the number of particles, it conserves
the parity of this number. In other words, forming and breaking Cooper pairs does not a�ect whether
the superconducting contains an even or odd number of electrons so fermion parity is a conserved
quantity (provided that isolated electrons do not enter or leave the system). Fermion parity, however,
is a many-body quantity, which cannot be directly described in terms of the single particle picture of
the BdG Hamiltonian. This is why we had to double the number of degrees of freedom by hand. When
a pair of levels crosses zero energy, the excitation energy ε of the Bogoliubov quasiparticle changes sign
and it becomes favorable to add(remove) a Bogoliubov quasiparticle. In other words, at each crossing
the fermion parity in the ground state changes from even to odd (or vice versa), meaning that these
crossings are fermion parity switches.
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The Pfa�an invariant
Since the ground state fermion parity is preserved by the superconducting Hamiltonian if there are

no Bogoliubov quasiparticles crossing zero energy, the ground state fermion parity is the topological
invariant of this system. It is clear however that this invariant is of a di�erent nature than the
one of the non-superconducting systems, which is given by the number Q of negative eigenvalues of
the Hamiltonian. The latter cannot change for a BdG Hamiltonian, which has a symmetric energy
spectrum, and hence it is not suitable to describe changes in fermion parity. For this kind of systems
the actual topological invariant is called the Pfa�an and will either take the value Q = ±1 ∈ Z2 at
every zero-energy crossing. Its rigorous de�nition is not really that important for our sake so we take
a simpler approach.
In order to introduce the Pfa�an invariant, we start by making a basis transformation H′

BdG =
UHBdGU† that makes the Hamiltonian an skew-symmetric matrix, i.e HT = −H. We do this because
the eigenvalues of antisymmetric matrices always come in pairs, i.e ±εn. Further reasoning will become
apparent as we go. Such a transformation is

H ′
BdG =

1

2

(
1 1

i −i

)
HBdG

(
1 1

i −i

)
=

1

2

(
H −H∗ +∆−∆∗ i (−H −H∗ +∆+∆∗)

i (+H +H∗ +∆+∆∗) H −H∗ −∆+∆∗

)
Indeed, because H is Hermitian then H=H∗ is antisymmetric and H+H∗ is symmetric, i.e HT = H;
since ∆ is antisymmetric then H ′

BdG is also antisymmetric. In it's diagonalized form the determinant
of this matrix is just the product of the pairs of eigenenergies, i.e det(H) =

∏
n

(
−ε2n

)
. The key feature

of the Pfa�an is revealed when taking now the square root of the determinant Pf(H) =
√
det(H) =

±
∏

n iεn. See that it is de�ned in such a way that the sign of the product is uniquely de�ned. At a
fermion parity switch a single εn changes sign, so the Pfa�an changes sign as well while the determinant
stays the same. We then de�ne the actual topological invariant as

QBdG = sign [Pf(iH)] ,

where we have included a factor of i just that the Pfa�an is a real number, such that at QBdG changes
its value from +1 to −1 at every zero-energy crossing. This means that it is the correct expression
for the ground state fermion parity and for the topological invariant. As some sort of intuition, you
can think of it as if the number of holeonic levels below zero energy counts negatively to the overall
positive electronic levels.

4. Combining symmetries

Particle-hole and spinful time-reversal symmetry
Take a system that has both particle-hole symmetry (PHS) and spinful time-reversal symmetry

(TRS) described by the Hamiltonian H. Let us take an intuitive approach to the band spectrum
analysis. By PHS we know that an electronic band is equivalent to a negative holeonic band. On the
other hand, by spinful TRS we know that there is Kramer degeneracy. Hence, since a PHS holeonic
band counts as negative to the number of bands below zero energy we will always end up with Q being
even and changing sign at a crossing. This is wrong but can't see the �aw in logic. I mean, looking at
the table I can see that P 2 = 1 and T 2 = −1 gives me no constrain on Q and thus trivial topology.

B. Introduction to topological invariant in higher dimensions.

1. Berry connection and Chern number.

In higher dimensional system the discrete energy levels of a d = 0 system are replaced by continuous
energy bands de�ned along the Brillouin zone. In these higher dimensions the topological invariant
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cannot be de�ned merely as counting levels below the Fermi energy or by tracking sign changes of the
Pfa�an in superconducting systems. Instead, the central theme of d > 0 dimensional band topology
lies in the concept of geometric phases.
As an illustrative example of the concepts to come, consider a vector placed at the earth's north

pole, always pointing in the tangent direction to the surface. If one translates the vector to the
equator along a meridian, then along the equator for some distance, and back to the north pole, the
vector's orientation will have changed relative to how it started by some angle. This angle is called the
holonomy. The origin of non-trivial band topological properties is not so di�erent from this example,
with the crucial replacement of the vector by a Hamiltonian H(α) depending on a set of parameters
α = (α1, ..., αN ), and the earth a manifold (topological space that locally resembles Euclidean space
near each point) spanned by those parameters. In the context of Hamiltonians, holonomy manifests
as the acquisition of additional geometric phases by the eigenstate of H(α) as the parameter space
manifold is traversed. More concretely, in band topology, α is taken to be the momenta k = (k1, ..., kd),
with d the space dimensions, together with a set of additional tunable parameters (chemical potential,
electric �eld, Zeeman, integrated out pairing, etc, etc...), and the eigenstate's additional geometric
phase is the so-called Berry phases (we will further explore this later concept in just a moment). In
this context, the restriction that evolution is adiabatic simply means that the system must remain in
a situation where energy bands do not cross, i.e. the system must be gapped.
The idea is that if the parameters α are varied adiabatically, then at each subsequent value of α,

eigenstates of one set of parameters are smoothly deformed into another set. This is the content of
the adiabatic theorem, which states that in the case of adiabatic evolution of the parameters along a
curve α(t), the Schrodinger equation

−iℏ∂t |ψn (α(t))⟩ = εn (α(t)) |ψn (α(t))⟩ [9]

is obeyed instantaneously. Here|ψn (α(t))⟩ represents the eigenstate of the Hamiltonian H (α(t)) in the
nth band with energy εn (α(t)) . Now, generically, due to the structure of the Schrodinger equation,
and the normalization of states, a single degree of freedom exists, which can change the eigenstate as
it is moved along the parameter space α(t). This corresponds to a phase denoted by θ(t), such that
the state can be decomposed as

|ψ (α(t))⟩ = eiθ(t)/ℏ |ϕ (α(t))⟩ . [10]

A short calculation performed by plugging this form of the state into the Schrodinger equation on both
sides, and acting with ⟨ψ (α(t))| on the left is enough to solve for the phase θ(t). One obtains

θ(t) =

ˆ t′

0

dt

[
ε (α(t)) +

i

ℏ
⟨ϕ (α(t))| ∂t |ϕ (α(t))⟩

]
[11]

There are two contributions to the phase acquired by the eigenstate under adiabatic evolution. The
�rst term is the familiar dynamical phase θD(t), which is acquired from evolving in time in the Hilbert
space. However, a second term appears, namely

γ(t) =
i

ℏ

ˆ t′

0

dt ⟨ϕ (α(t))| ∂t |ϕ (α(t))⟩

which is called the geometrical phase or Berry phase. This phase can be calculated via the aforemen-
tioned time integral, or equivalently by integrating over the curve C spanned in the parameter space
α during the adiabatic evolution, reading

γC =

ˆ
C

dα
i

ℏ
⟨ϕ(α)| ∇α |ϕ(α)⟩ ≡

ˆ
C

dαA(α) [12]

with A(α) the so called Berry connection.
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The Berry connection plays the same role in adiabatic evolution as the vector potential in electro-
magnetism, and indeed, much like in the latter theory, this connection can be used to construct a
curvature tensor. In the context of electromagnetism, the curvature tensor is nothing but the electro-
magnetic tensor Fµν , while in the context of the adiabatic evolution of quantum systems, it is given
the special name of Berry curvature Ωµν . Explicitly, this Berry curvature reads

Ωµν(α) =
∂

∂αµ
Aν(α)−

∂

∂αν
Aµ(α)

One often considers the dual pseudo-vector to this tensor, this is Ωµν = εµνξΩ
ξ with εµνξ the Levi-

Civita symbol, and calls that the Berry curvature instead. This quantity is analogous to the magnetic
�eld B = ∇×A. Another similarity between electromagnetism and these concepts is that the Berry
connection, like the magnetic vector potential, is de�ned only up to a gauge choice. This makes it so
the Berry phase is only well de�ned if closed curves C in the parameter space are considered.
As a �nal summary, information about the topology of the target space of H(α) is acquired by

integrating the Berry connection or curvature over the entire Brillouin zone, or in other words, the
holonomy of the Hamiltonian as the Brillouin zone is traversed is sensitive to the band-topology. The
integration of this Berry curvature yields quantities called topological invariants which are analogous
to the Winding number of the Aharonov-Bohm e�ect (see the example below). In this d > 0 context,
one can also refer to the topological invariants as Chern number.
A fundamental consequence of having a well-de�ned topological invariant in d > 0 is the so-called

bulk-boundary correspondence. This principle asserts that nontrivial topological properties in the bulk
of a material inevitably give rise to robust, gapless modes at its boundaries, whether along edges in 2D
or surfaces in 3D. One can intuitively see why this should be the case by noting that at the boundary
of a topological non-trivial system there is only vacuum, a topological trivial system. This means that,
at this boundary, the topological invariant must change from something non-zero to zero which is only
possible if the gap closes. This gives rise to emergent gapless edge state which are protected against
perturbations that do not close the bulk gap.

2. Aharonov-Bohm e�ect

As a predecessor to the topological band theory, we now introduce the reader to an electromagnetism
examples known as the Aharonov-Bohm (A-B) e�ect as a starting point to understanding the Berry
phase, connection, curvature in more detail.
Consider an electron whose movement is restricted to the xOy place where an in�nitely thin and

long solenoid pierces through it at it's center. Inside the solenoid an electric current �ow inducing a
magnetic �eld B = Bẑ such that a magnetic �ux ϕ �ows penetrates the the plane of motion of the
electron. Although there exists no �eld or �ux outside the solenoid, a magnetic vector potential A
permeates all space. Now, note that the electron wandering the plane will actually be a�ected by the
vector potential, in that the Hamiltonian describing it will have the form

H(r) =
ℏ2

2m
(∇r − e∇r ·A(r))

2
[13]

with p = −iℏ∇r the momentum operator, e the electron charge and m its mass. In this case, the
parameters α can be identi�ed with the actual position of the electron r. Since the electron cannot
enter the solenoid, which is assumed to be placed at r = 0, its movement is restricted to everywhere
except there.
As explain in the previous section, as the electron moves following a curve C it will acquire a Berry

phase, or rather, is in this context, the A-B phase, given by equation [12] as

γA-B =
e

ℏ

˛
C

drA(r), [14]
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with A being not the general Berry connection but the actual physical vector potential. The A-B
phase, in some sense, measures the inability of making a continuous gauge choice for the magnetic
vector potential in a punctured plane. The presence of the puncture hole makes it so a discontinuity
along a branch cut is a mathematical necessity, and as a result, if an electron loops around the hole,
it will acquire a non-trivial phase, dependent only on the number of times it goes around the hole (see
�gure [3]). For this reason, it is said that the A-B phase is a topological quantity, depending only on
the topology of the electron's trajectory, namely on a quantity called the winding number.
Alternatively, through the usage of Stoke's theorem, it is simple enough to compute the A-B phase

as being proportional to the magnetic �ux, this is

γA-B =
e

ℏ

‹
dS ·B =

e

ℏ
Wϕ

enclosed by the trajectory's area S, where W ∈ Z counts the number of loops the electron makes
around the solenoid. It's precisely this quantity that corresponds precisely to the winding number.

Figure 3. (a) Holonomy, (b) Aharonov-Bohm e�ect

3. Quantum Thouless pump

II. TOPOLOGICAL SUPERCONDUCTIVITY IN 1D MODELS

A. Kitaev model

The Kitaev chain or Kitaev�Majorana chain is a toy model for a \topological superconductor using
a 1D hybrid (semiconductor+superconductor) nanowires featuring Majorana bound states. It consists
of a 1D linear lattice of N site and spinless fermions at zero temperature, subjected to nearest neighbor
hoping interactions. The real-space tight-binding Hamiltonian describing such model reads

H = µ

N∑
i=1

(
c†i ci −

1

2

)
− t

N−1∑
i=1

(
c†i+1ci + h.c

)
+∆

N−1∑
i=1

(
c†i+1c

†
i + h.c

)
[15]

with c†i (ci) fermionic creation (annihilation) operators, µ the chemical potential, t the hopping energy
and ∆ an proximity induced superconducting p-wave pairing.
The objective of this model de�nition is to be able to have a Majorana bound states on the edges

mode. For this, let us engineering the Hamiltonian in such a special way that it is actually possible to
separate two Majoranas. Foremost, we de�ne each site n as if it has two sublattices, s = A and s = B.
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We then de�ne Majorana operators relating to the fermionic operators as

γAi = c†i + ci and γBi = i
(
c†i − ci

)
[16]

or rather, in the opposite way, as

c†i =
1

2

(
γAi − iγBi

)
and ci =

1

2

(
γAi + iγBi

)
[17]

Indeed, each site can host a fermion or, equivalently, each site hosting two Majorana modes. These

Majorana operators are Hermitian γsi = (γsi )
†
, unitary (γsi )

2
= 1 and anticommute as

{
γsi , γ

s′

j

}
=

2δijδss′ .
Substituting directly into the Hamiltonian of equation [15] the fermionic operators as given by

equations [17] we obtain

H = −iµ1
2

N∑
i=1

γBi γ
A
i + i

1

2

N−1∑
i=1

(
ω+γ

B
i γ

A
i+1 + ω−γ

B
i+1γ

A
i

)
, with ω± = ∆± t [18]

From it we can distinguish between two phases�trivial and topological�, corresponding, respectively,
to two di�erent ways of pairing these Majoranas states�no unpaired modes or one isolated mode on
both edges. These pairing con�guration are depicted in �gure [4] in blue and red respectively. This
phases can be easily identi�ed, respectively, in their limiting regimes where one sets ∆ = t = 0 and
µ = 0 with ∆ = t ̸= 0.

Figure 4. Kitaev chain Majorana modes pairing possibilities

Indeed, see that by setting ∆ = t = 0 within the Hamiltonian of equation [18] we obtain

Htrivial = −iµ1
2

N∑
i=1

γBi γ
A
i , [19]

which corresponds to the limiting case of "no unpaired Majorana modes" con�guration. The energy
cost for each fermion to be occupied is µ, with all excitations having an energy of either ±µ/2. The
band structure will then have a gapped bulk and no zero energy edge states. Furthermore, see that the
wavefunctions of the �rst three energy states shown in �gure [5] in this trivial phase simply resemble
the harmonic modes of a string states.
On the other hand, see that by setting µ = 0 with ∆ = t ̸= 0 we obtain

Htopological = it

N−1∑
n=1

γBi γ
A
i+1 [20]

which corresponds to the "unpaired edge Majorana mode" con�guration where every Majorana opera-
tor is coupled to a Majorana operator of a di�erent kind in the next site. Note that the summation only
goes up to n = N − 1. Moreover, see that by assigning a new fermion operator c̃i = 1/2

(
γBi + iγAi+1

)
,

the Hamiltonian can be otherwise expressed as

Htopological = 2t

N−1∑
n=1

(
c̃†i c̃i +

1

2

)
[21]
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which describes a new set of N − 1 Bogoliubov quasiparticles with energy t. For every Majorana pair
we assign an energy di�erence 2t between the empty and �lled state. All states which are not at the
ends of the chain have an energy of ±t and thus the bands structure has a gapped bulk. However,
see that the missing mode c̃N = 1/2

(
γBN + iγA1

)
, which couples the Majorana operators from the two

endpoints of the chain, does not appear in the Hamiltonian and thus it most have zero energy. As
the presence of this mode does not change the total energy, the ground state is two-fold degenerate.
This condition is a topological superconducting non-trivial phase. This mode is called a Majorana
zero mode and is highly delocalized at the edges, as it can be seen in red in �gure [5]. As one tunes µ
in the direction of the trivial phase, the topological gap, protected by particle-hole symmetry (PHS),
gets smaller and smaller and the Majoranas wavefunctions stay less and less localized at the edges. At
the transition between the trivial and topological, when the chemical potential takes it's critical value
of |µ| = 2t, the �rst energy states stays evenly distributed along the chain.
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Figure 5. Kitaev chain (top) band structure (middle) I will eventually plot the 1st, 2nd and 3rd state
wavefunction here at each regime, and (bottom) band spectrum for a chain length of L = 50 with lattice
spacing a0 = 1 �xing ∆ = t = 1.0. The critical µ shifts forward to in�nity as L → 0.

Bogoliubov-de Gennes Hamiltonian Let us now de�ne the Hamiltonian in E.(15) in its Bogoliubov-
de Gennes (BdG) form

H =
1

2
č†HBdGč.

where we have de�ned the Nambu spinor as

č†i =
(
c†i ci

)
and či =

(
ci
c†i

)
[22]

This proves not only useful to the study of the system's symmetries, but it also a necessary step for
the numerical implementation in Quantical.jl. De�ning τx, τy, τz as Pauli matrices in the particle-hole
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subspace and using we the fermionic anti-commutation properties {ci, c†j} = δij and {ci, cj} = 0, one
can check that

µ : č†i τz či =
(
c†i ci

)(
1 0

0 −1

)(
ci
c†i

)
= c†i ci − cic

†
i = 2c†i ci − 1 [23]

t : č†jτz či =
(
c†j cj

)(
1 0

0 −1

)(
ci
c†i

)
= c†jci − cjc

†
i = c†jci + h.c [24]

∆ : č†jiτy či =
(
c†j cj

)(
0 1

−1 0

)(
ci
c†i

)
= c†jc

†
i − cjci = c†jc

†
i + h.c [25]

Hence the Hamiltonian in equation [15] in its BdG form reads as

H = µ
1

2

∑
i

č†i τz či − t

N−1∑
i=1

č†i+1τz či +∆

N−1∑
i=1

č†i+1iτy či [26]

See that the Hamiltonian has particle-hole symmetry, i.e PHP−1 = −τxH∗τx = −H with P = τxK
and K complex conjugation, as well as time reversal symmetry, i.e T HT −1 = H∗ = H with T = K
for this spinless case (for reference, T = iσyK for a 1/2-spin system). Once again, to understand why
this is the case check.
Topological invariant

1. Majorana modes at a domain wall

Consider the case where we weld together two semi-in�nite nanowires with one in it's trivial phase
and the other in it's trivial phase. The spacial pro�le of the chemical potential µ(x) would then
approximately a Heaviside theta function from |µleft| > 2t to |µright| < 2t, forming a doping domain
wall at it's center. Hamiltonian wise, one just substitutes µ→ µ(x) directly into equation [15]. What
one obtains in this situation is a Majorana mode localized at the domain wall with its twin forming in
the semi-in�nite edge of the topological side.

Figure 6. needs caption
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2. Kitaev ring

3. Doublet Kitaev chain

B. SSH model

The most relevant references used for this section follow:

C. Oreg-Lutchyn models

I found some good intuitive remarks on Stoudenmire 2011 PRB which eventually I wish to include.

The Oreg-Lutchyn Majorana minimal model consists of a �nite 1D semiconductor (SM) nanowire
with strong spin-orbit coupling (SOC) α and a tunable chemical potential µ, in proximity of a su-
perconductor (SC) of homogeneous pairing ∆, having a magnetic �eld Bz applied along it's length,
de�ned as the ẑ direction. The Rashba e�ect describes the coupling of an electric �eld Ex that breaks
inversion symmetry breaking in the direction perpendicular to the wire, to the electron's spin, i.e

∝ (i∇⃗ × x̂) · σ⃗ = iσy∂z with σ⃗ = (σx, σy, σz). The Zeeman e�ect described the spin splitting due to
the in-plane magnetic �eld Bz. The pairing term describes the Cooper pairs from BCS theory than
could tunnel from the SM to the SC.

The tight-binding Hamiltonian describing such system can then be decomposed as

H = HK +HSOC +HZ +HSC [27]

HK = (2t− µ)
∑
iσ

c†iσciσ − t
∑
⟨i,j⟩σ

c†iσcjσ [28]

HSOC =
α

2a0

∑
iσ

(
c†i+1σ̄ciσ + h.c

)
[29]

HZ = VZ
∑
i

(
c†i↑ci↑ − c†i↓ci↓

)
[30]

HSC = ∆
(
c†i↓c

†
i↑ + h.c.

)
[31]

with c†i (ci) fermionic creation (annihilation) operators, µ the chemical potential, t = η/a20 the hop-
ping energy into ⟨i, j⟩ nearest-neighbouring sites with a0 the lattice constant and η = ℏ2/2m∗ with
m∗ the e�ective mass of the electrons, VZ = gJµBBz/2 the Zeeman potential with gJ the Landé gy-
romagnetic moment and µB Bohr's magneton, α the Rashba SOC strength and ∆ proximity induced
superconducting s-wave pairing.

A paragraph explaining the bands.
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Figure 7.

A paragraph explaining the phase-diagram, pfa�an and band spectrum.

Figure 8.

Bogoliubov-de Gennes Hamiltonian Shown below are the broad strokes of a numerical implemen-
tation of the Hamiltonian in Julia using the Quantica.jl. However, prior to this implementation, we
will be needing the Bogoliubov-de Gennes formalism. For this, need to double the degrees of freedom
through the Nambu-spinor. In the so called unrotated-spin basis we de�ne a Nambu spinor as

č†i =
(
c†i ci

)
=
(
c†i↑ c†i↓ ci↑ ci↓

)
[32]
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In this Nambu⊗spin orbital space the Hamiltonian in equation [27] reads

H =HK +HSOC +HZ +HSC [33]

HK =(2t− µ)
∑
i

č†i [τz ⊗ σ0]či −
1

2
t
∑
⟨i,j⟩

č†i [τz ⊗ σ0]čj [34]

HSOC =
α

2a0

∑
i

č†i [τz ⊗ iσy]či+1 [35]

HZ =VZ
∑
i

č†i [τz ⊗ σz]či [36]

HSC =
1

2
∆
∑
i

č†i [τy ⊗ σy]či [37]

with τ Pauli matrices in the particle-hole subspace and σ in the spin subspace.

To understand why this is the case check we show explicitly the derivation for the pairing term
as an example. It reads:

č†[τy ⊗ σy]č =
(
c†↑ c†↓ c↑ c↓

)
0 0 0 −1

0 0 +1 0

0 +1 0 0

−1 0 0 0



c↑
c↓
c†↑
c†↓

 [38]

= −c†↑c
†
↓ + c†↓c

†
↑ + c↑c↓ − c↓c↑ = 2

(
c†↓c

†
↑ + h.c.

)
where we the fermionic anti-commutation properties {ci, c†j} = δij and {ci, cj} = 0.
The remaining terms derivation is analogous but even simpler because there is will be no mixing
of particle with particle-hole components; the holeonic terms will correspond to the negative
of the electronic terms, meaning that one just needs to expand the space according to τz⊗ the
respective spin matrix. For the kinetic term there is no mixing of spin so it must trivially have
the spin Pauli matrix σ0. Similarly, for the Zeeman term there is only the same-spin mixing of
the type ↑↑ − ↓↓ so it must have σz . As for the SOC term there is spin-mixing of opposing
spins, so the options are either σx or iσy (with a i for it to be hermitian). One can check with
the fermionic anti-commutation properties that it is indeed iσy.

Alternative Nambu basis It is common for people to de�ne instead the Nambu spinor in a rotated
basis as such

c̄†i =
(
c†i [iσyci]

)
=
(
c†i↑ c†i↓ ci↓ −ci↑

)
[39]

As also explained in section II.C.1 of the previous part, these basis' operators relate to each other as

c̄i =Ū či ⇔ či = Ū†
c̄i [40]

c̄†i =č†i Ū
† ⇔ č†i = c̄†i Ū [41]

and, consequently, for a generic M̌ matrix,

M̄ = ŪM̌ Ū†
[42]
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with Ū is a unitary matrix (i.e Ū†Ū = ŪŪ†
= 1)

Ū =

(
σ0 0

0 ıσy

)
[43]

Making use of Pauli matrices' property

σασβ = σ = σ0δαβ + iεαβγσγ [44]

one can check that

HK :Ū [τz ⊗ σ0]Ū
†
= [τz ⊗ σ0] [45]

HSOC :Ū [τz ⊗ ıσy]Ū
†
= [τz ⊗ ıσy] [46]

HZ :Ū [τz ⊗ σz]Ū
†
= [τz ⊗ σz] [47]

HSC :Ū [τy ⊗ σy]Ū
†
= [τx ⊗ σ0] [48]

meaning that, in this the rotated basis, only the pairing Hamiltonian has it's Pauli matrices changed.
Concretely,

HSC =
1

2
∆
∑
i

c̄†i [τx ⊗ σ0]c̄i [49]

III. TOPOLOGICAL SUPERCONDUCTIVITY IN 2D MODELS

Need a intuitive and organized introduction relating all the nomenclatures "topological insulator",
"Chern insulator" with the various e�ects. I still don't have a clear map of what's what and the subtle
symmetry di�erences.

Figure 9. Members of the Hall family. B is an external magnetic �eld, M an intrinsic spontaneous magnetiza-
tion, and the electron arrows denotes spin. Say which symmetries are being broken in each case. Time-reversal,
time-reversal and spacial invariance symmetry, and ???. And maybe I prefer to put the images being the actual
examples I give, corbino disk, zigzag graphene and ???

A. Integer quantum hall e�ect

1. Classical Hall e�ect and Landau quantization

Classical Hall e�ect
Let us begin by considering the classical Hall e�ect. In this well-known phenomenon, an electric
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current is established along the x axis of a conductive material. A magnetic �eld is then applied
perpendicular to the current, typically oriented along the z axis, that is, normal to the plane of the
conductor. This con�guration gives rise to the Lorentz force, which acts on the charge carriers and
de�ects them in the y direction. The Lorentz force, given by F = e(v×B), arises from the interaction
between the charge carrier's motion and the applied magnetic �eld, with e and v the charge and velocity
vector of the carriers, and B the magnetic �eld. This de�ection results in an accumulation of charge on
opposite edges of the conductor, which induces a transverse electric �eld. Eventually, this electric �eld
balances the Lorentz force, preventing further charge separation. The resulting potential di�erence
across the y axis is known as the Hall voltage. Since the transverse electric �eld arises speci�cally to
counteract the Lorentz force, which is itself proportional to the strength of the applied magnetic �eld,
it follows that the Hall voltage is expected to vary linearly with the magnetic �eld. Consequently, the
Hall resistivity, de�ned as the ratio of the Hall voltage to the current, is likewise expected to exhibit
a linear dependence on the magnetic �eld. This concepts and quantities are depicted in �gure [10].
Prior to the discussion of the quantum Hall e�ect, let us make some addition "back-of-the-envelope

calculations" to gain a better intuition of the problem at hand.
Streda relation
Let us posit the ansatz that the electrons enter a steady state. Such a steady state can be obtained

by making a Galilean transformation to a reference frame moving with velocity v with respect to the
original reference frame. In this steady state the average force on the electrons must be zero, F =
e(E+ v×B) = 0. The corresponding current density, de�ned as j = nev with n the electron density,
can then be expressed as j = (ne/B)(E × z). In terms of conductance one can write j ≡ σH(E × z)
with σH = ne/B the so-called Hall conductance or Streda relation. Moreover, if we de�ne the so-called
��lling factor� as ν = nh/(eB) the Hall conductance can then be written as a multiple of the quantum
of conductance as

σH = νe2/h. [50]

At relatively high carrier densities, the Hall conductivity behaves in accordance with the classical
expression above, and it typically scales linearly with gate voltage, which tunes the electron density n.
However, at low �lling factors, the situation becomes more intricate. One might reasonably expect that
various non-idealities such as disorder, lattice e�ects, or electron-electron interactions would violate the
assumptions underlying Galilean invariance. As a result, deviations from the simple linear dependence
of σH could arise, leading to sample-speci�c behavior that is sensitive to microscopic details.
Landau quantization
Let us now examine the Schrödinger equation for an ideal 2D electron gas subject to a perpendicular

magnetic �eld. The system is then described by the Hamiltonian H(r) = 1
2m (p− eA(r))

2
with p the

canonical momentum operator and A(r) the vector potential operator. A convenient gauge choice in
this context is one in which the vector potential, related to the externally-applied uniform magnetic
�eld B = Bz as B = ∇ × A, depends only on the y-coordinate, concretely A(x, y) = x̂By. In this
gauge, known as Landau gauge, the Hamiltonian reads instead as

H(r) =
p2x
2m

+
1

2
mω2

c

(
x− ℏky

mωc

)2

, with ωc = eB/m [51]

the cyclotron frequency. See that, since the operator y is absent for this choice of gauge, the operator
py commutes with the Hamiltonian meaning that this form is translationally invariant along the y-
direction. This allows us to replace py by its eigenvalue ℏky, identifying ky as a good quantum number.
Apart from a shift of the x-coordinate by an amount x0(ky) = ℏky/mωc, the resulting Hamiltonian
corresponds to that of a 1D quantum harmonic oscillator. Consequently, the eigenenergies of this
system are thus identical to those of the standard quantum harmonic oscillator, given by

En = ℏωc

(
n+

1

2

)
. [52]
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The corresponding wave functions, due to the commutation relation [py, H] = 0, will then factor
into a product of plane-waves in the y-direction and shifted harmonic oscillator eigenstates, this is
ψ(r) = eikyyϕn(x− x0). Each collection of states associated with a �xed quantum number n de�nes a
so-called Landau level.
To understand the degeneracy of these Landau levels, let us consider the physical constraints of the

system. These discrete energy levels become observable only when the thermal energy kBT is smaller
than the level spacing ℏωc, which places us in the regime of low temperatures and strong magnetic
�elds. Within this regime, each Landau level is highly degenerate, as the quantum number ky may take
values ky = 2πN/Ly with N an integer and Ly the system's length in the y-direction. Moreover, the
allowed values of N are further restricted by the condition that the center of force of the oscillator must
physically lie within the system, i.e 0 ≤ x0 < Lx, with Lx the system's length now in the x-direction.
Because of this, N must range between zero and mωcA/2πℏ, with A = LxLy the total area of the
system. For electrons, spin-1/2 particles of elemental charge, this upper bound on N can be further
expressed in terms of the ratio Nmax = 2Φ/Φ0, with Φ0 = h/e the fundamental magnetic �ux quantum
and Φ = BA the �ux through the system. This result means that each Landau level can accommodate
exactly two electrons per �ux quantum that penetrates the system. If, for example, Zeeman splitting
is included, each Landau level would split into a pair, one for spin up electrons and the other for
spin down electrons, with the occupation of each spin Landau level being just one electron (per �ux
quantum). In the spinless case, if n Landau levels are �lled at a given chemical potential, the �lling
factor must be ν = n, which, by Streda formula's, leads directly to the Hall conductance

σH = ne2/h. [53]

2. Quantum Hall chiral edge states

As we just discussed, for clean two-dimensional electronic systems at low temperatures, the Hall
voltage initially exhibits a linear dependence on the applied magnetic �eld, as predicted by classical
theory. However, as the magnetic �eld increases further, this linear trend breaks down and distinct
plateaus emerge in the Hall voltage, as seen in �gure [10]. This phenomenon is known as the quantum
Hall e�ect, �rst discovered in two-dimensional electron gases subjected to low temperatures and strong
magnetic �elds. More remarkably, the Hall resistivity becomes quantized, taking on discrete values
given by RH = h/(e2ν) with h the Planck's constant and ν an integer known as the �lling factor. This
quantization is extraordinarily precise�accurate to more than one part in a billion�and is observed
universally, regardless of the microscopic details of the material, the geometric shape of the sample,
or even variations in sample purity. The robustness and universality of this quantization re�ect the
topological nature of the quantum Hall e�ect since it arises from global properties rather than local
perturbations. In this context, the �lling factor is the topological invariant characterizing the system.
Let us inspect once more �gure [10]. Observe that, accompanying the quantization of the Hall

resistivity, the longitudinal resistivity appears to vanish within the plateau regions. This implies
that during these quantized regimes there is e�ectively no dissipation of electrical energy along the
direction of current �ow, indicating that the electric �eld and the current density are orthogonal
to each other. In other words, the current �ows entirely transverse to the applied electric �eld, a
hallmark of purely Hall-type conduction. This orthogonality is a direct consequence of the topological
nature of the quantum Hall state, in which extended edge states carry current without back-scattering,
while the bulk of the material remains insulating. This insulating behavior of the bulk is further
corroborated by the exp(−T0/T ) temperature dependence of the longitudinal transport coe�cients
behavior. This characteristic thermal activation implies that charge transport in the bulk is suppressed
at low temperatures, indicating the presence of an energy gap which must be overcome for carriers
to contribute to conduction. However, in the quantum Hall regime�as in all topological phases of
matter�a crucial distinction arises. The energy gap does not extend uniformly across the entire system.
Instead, it necessarily vanishes at the edges of the sample as stated by the bulk-edge correspondence.
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Additional remarks
An alternative and intuitive justi�cation for the existence of chiral edge states arises from a semiclas-

sical perspective. Consider the classical trajectory of an electron moving with velocity v in a uniform
magnetic �eld B perpendicular to the plane of motion. In such a scenario, the electron follows a circu-
lar trajectory known as a cyclotron orbit, with radius given by rc = mv/eB. Furthermore, the angular
momentum of an electron undergoing this motion is L = mvrc = eBr2c . In the quantum mechanical
framework, angular momentum is quantized, so only orbits satisfying L = nℏ with n ∈ N are permit-
ted. Equating this with the classical expression yields r2c = nℏ/eB, implying that the allowed cyclotron

radii are discrete and given by rn =
√
nlB with lB =

√
ℏ/eB the so-called the magnetic length. More-

over, all such orbits, regardless of radius, rotate at the same cyclotron frequency ωc = eB/m. As a
result, the energy associated with the quantized circular motion becomes En = Lωc = nℏωc. Thus,
from this semiclassical approach based on angular momentum quantization, we once again recover the
same energy spectrum as that of the Landau levels, originally obtained through the analysis of the 1D
quantum harmonic oscillator Hamiltonian in Landau's gauge.

Let us now examine the behavior of the classical trajectory of an electron when the center of its
cyclotron orbit lies closer to the edge of the sample than the cyclotron radius. In realistic systems,
electrons are con�ned by an electrostatic potential that prevents them from escaping the physical
boundaries of the material. As illustrated in �gure [10], for the simplest example of a ribbon geometry,
the interplay between this con�ning potential and the strong perpendicular magnetic �eld modi�es the
nature of the electron motion near the edges. Instead of executing closed cyclotron orbits, electrons
near the boundary are re�ected by the potential and trace out open trajectories along the edge, known
as skipping orbits. In such con�gurations, the motion becomes unidirectional: on the lower edge,
electrons propagate exclusively to the left, while on the upper edge they move only to the right.
Hence, each edge supports states that move in a single direction, with the propagation direction at
opposite edges being reversed. These boundary modes are referred to as chiral edge states and their
chirality is determined by the direction of the magnetic �eld perpendicular to the plane of motion.
Reversing the magnetic �eld orientation reverses the direction of propagation at both edges.

The precise shape of the con�ning potential is not essential for our purposes, provided it satis�es
certain generic features. Speci�cally, it should be approximately �at in the central region of the
ribbon, allowing us to set V (xbulk) = 0, and should rise steeply near the physical boundaries in order
to e�ectively con�ne the electrons. As previously discussed, in the bulk of the system, the electron
states correspond to classical cyclotron orbits, and the energy spectrum consists of �at Landau levels
with energies En that are independent of ky. However, states localized within a few magnetic lengths
of the edge are signi�cantly a�ected by the rising con�ning potential, which in this regime cannot be
neglected. Particularly, for states centered at position x0 = ℏck/eB, the energy is expected to increase
by an amount proportional to V (x0) with respect to the original Landau level, since x0 is directly
proportional to k. As depicted in �gure [10], the resulting bending of the Landau levels implies that,
even when the Fermi level lies in the middle of a bulk gap, there will be energy bands intersecting it,
corresponding to the energy of the chiral edge states. Those crossing at negative k are localized near
the lower edge, while those crossing at positive k are localized near the upper edge. Also, see that, for
each edge there are as many edge states as there are �lled Landau levels in the bulk of the system.

Moreover, near the Fermi energy, the dispersion of these edge states can be well approximated as
linear, yielding a relation of the form E = ℏv(k − kF ), with kF = 2πN/Lx the Fermi momentum, N
the number of electrons and Lx the length of ribbon along the x-direction. Because the slope of the
potential is just the local electric �eld perpendicular to the edge of the sample, the velocity of the edge
states can be simply interpreted as the drift velocity of a skipping state, i.e vedge = −∂yV (y)/B. One
can then see that the velocity is opposite at the two edges because the local electric �eld created by
the con�ning potential always points towards the interior of the sample.
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3. Non-interacting electrons in a Corbino disk

To understand the quantum Hall bulk-edge correspondence more concretely, let us consider a two-
dimensional annular system threaded by an external magnetic �ux Φ, as illustrated in �gure [10].
As the magnetic �ux is gradually increased, Faraday's law implies the emergence of an azimuthal
electric �eld. This, in turn, induces a radial current that redistributes charge between the inner and
outer edges of the annulus, e�ectively polarizing the system. In a conventional metallic system, such a
redistribution would relax over time due to �nite longitudinal conductivity in the bulk, allowing charge
to �ow back and neutralize the polarization. However, in the quantum Hall regime, the bulk lacks
longitudinal conductivity due to the presence of an energy gap. As a result, the induced charge cannot
relax through bulk conduction and instead accumulates at the edges. However, for this accumulation
to occur, there must exist accessible electronic states near the chemical potential at the edges where
the charge can reside. In the regime where the induced electric �eld is slowly-varying, i.e, of low
frequency and with a wavelength on the order of the system size, then the perturbation will not have
enough energy to excite carriers across the bulk energy gap, meaning that the only way the system
can respond is if zero-energy states are available at the edge. It is important to note that the charge
localized at the edge is not conserved. If one "peels o�" the outer edge of the sample the resulting
structure will just be a thinner annulus, still supports gapless edge states at its new boundaries. This
recursive property illustrates that the presence of edge states is not tied to a speci�c physical location,
but rather to the mere existence of a boundary separating the topologically nontrivial quantum Hall
bulk from a trivial vacuum.

Another, distinctly quantum mechanical, key ingredient of the system is the requirement that the
energy spectrum of the annular system must be periodic with respect to the magnetic �ux Φ threaded
through its hole, with a period equal to one �ux quantum, Φ0 = h/e. This is a manifestation of the
Aharonov�Bohm e�ect, as discussed in section [??]. Suppose the system is initially in its ground state
with zero �ux threading the hole. If we then adiabatically increase the �ux to one �ux quantum Φ0,
the system will remain in an eigenstate due to the slow, coherent nature of the evolution. However, it
will generally not return to its original ground state. This is because, during the �ux insertion, charge
is transferred from one edge of the annulus to the other, leading to a �nal state with di�erent edge
charge distribution. Although this new state is an eigenstate of the system's Hamiltonian, it is not the
ground state, due to the energetic cost associated with the imbalance in edge charge. This behavior is
completely general and does not depend on microscopic details of the system�it relies solely on the
fact that the system is in a topologically nontrivial quantum Hall phase.

Let us now restrict our attention to non-interacting electrons, deferring the discussion of interactions
to a later stage in the course. In the non-interacting picture, the many-body eigenstates of the system
can be constructed from single-particle states, each of which can be either occupied or unoccupied. At
zero temperature, the ground state corresponds to a con�guration in which all single-particle states
below the chemical potential are �lled, while those above remain vacant. Excited states arise when
electrons are promoted to higher-energy unoccupied states, leaving vacancies behind. In the quantum
Hall regime, since the only eigenstates available at low energy are at the edge, turning on one �ux
quantum must result in a transfer of an integer number of electrons between the edges. This observation
leads directly to the quantization of the Hall conductivity: the amount of charge transferred per �ux
quantum is quantized in integer units of e, and therefore the Hall conductivity must be quantized in
units of e2/h.

Note, however, a slight complication on our integer argument. Integers, by their very nature, cannot
change continuously. This implies that some aspect of our argument must break down in the regions
of magnetic �eld lying between two quantized Hall plateaus. Indeed, experimental data reveal exactly
what goes wrong. In these intermediate regimes, the Hall conductivity is no longer quantized and
the longitudinal conductivity becomes non-zero. This indicates that during the adiabatic insertion of
magnetic �ux, a current still �ows from the inner to the outer edge of the sample. However, once the
�ux insertion is halted, the accumulated edge charge does not remain stable; instead, it relaxes, and
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energy is dissipated within the bulk of the system. As a result, the system returns to its original state,
signaling the breakdown of perfect quantized transport. Most importantly, see that the emergence of a
non-zero longitudinal conductivity signals the closing of the bulk energy gap. As we have emphasized
throughout, topological invariants, such as the quantized Hall conductivity, are well-de�ned only in
the presence of a �nite energy gap. Therefore, a transition between distinct quantized values must be
accompanied by the closure of this gap, allowing the system to change its topological character. In
other words, topological numbers are stable under smooth deformations of the Hamiltonian so long
as the gap remains open, and can only change when the gap vanishes. This is a general and robust
feature of topological phases.
Disclaimer and teaser
To conclude, we note a brief disclaimer and a teaser. The disclaimer is that, for the sake of clarity,

certain complexities have been glossed over, some of which will be addressed later. So far, we have
focused on one particular realization of the quantum Hall e�ect, that of electrons occupying Landau
levels. However, many other realizations exist. For example, electrons may experience a periodic
potential alongside a magnetic �eld, and one may include disorder to better represent real physical
systems. In these cases, Landau levels are no longer the appropriate single-particle eigenstates, and
discussing the new resulting eigenstates is not, in every way, trivial. Rather than delve into these
complexities, our focus stayed on the key topological feature, that our topological invariants � the
quantized Hall conductivity, quantized Hall resistivity, and robust edge states � remain unchanged
as long as the energy gap of the system does not close. The teaser concerns the upcoming discussion
of the fractional quantum Hall e�ect. When the Hall conductivity takes fractional values, for instance
1/3e2/h, the adiabatic insertion of a single �ux quantum into the annulus results in an eigenstate where
the exterior edge accumulates a fractional charge equal to one-third of an electron, and the interior
accumulates a corresponding fractional hole. This eigenstate is exceptionally stable and e�ectively
persists inde�nitely, featuring localized fractional charge, which is a de�ning characteristic of strongly
correlated topological phases. These fascinating phenomena will be explored later, although, as with
all topics in this book, the treatment will be introductory and will not cover much details. The
goal is instead to provide new readers with a clear understanding of the key concepts and underlying
intuitions.

Figure 10. Hall e�ect. Needs caption.

B. Anomalous quantum Hall e�ect

In this section, we demonstrate that the quantum Hall e�ect can occur even in the absence of strong
magnetic �elds. In particular, we show that it can arise from a conventional Bloch band structure
with broken time-reversal symmetry, yet without any net magnetic �ux through the system. This
phenomenon is known as the quantum anomalous Hall e�ect, and it characterizes what are referred to
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as Chern insulators. The model discussed in this section, Haldane's graphene model, is widely regarded
as a precursor to modern time-reversal invariant topological insulators.

1. Graphene's discrete symmetries

As a preliminary note, we recommend that the reader review the basics of graphene, which can be
found in appendix [??]. This will provide useful context, as we now turn to discussing graphene from
the perspective of its discrete symmetries.
As discussed in appendix [??], graphene is a semi-metal characterized by two inequivalent Dirac

points located at the corners of the Brillouin zone, commonly labeled as the K and K ′ points. At
these points, the conduction and valence bands meet, and the low-energy excitations are e�ectively
described by a two-dimensional massless Dirac equation. The aim of this section is to examine the
topological nature of these gapless Dirac points and the role of symmetry in protecting them. In
particular, we discuss that their stability relies on the simultaneous presence of spatial inversion and
time-reversal symmetry. If either of these symmetries are broken, the gap will open up.
Starting with the discussion on inversion symmetry, we refer to the operation that exchanges the A

and B sublattices through a re�ection across the horizontal plane that bisects the unit cell, as illustrated
in light gray in �gure [??]. Given graphene's lattice, this spatial inversion symmetry is intimately
connected to sublattice symmetry. Consequently, the Hamiltonian becomes block o�-diagonal in the
sublattice basis and satis�es the relation

τzH(−k)τz = −H(k) [54]

with τz the Pauli-z matrix acting in sublattice space. It is important to note, however, that this
sublattice symmetry is only approximate. It arises from the idealized tight-binding model limited to
nearest-neighbor hopping. If longer-range hoppings were included, both spatial inversion and sublattice
symmetries would be explicitly broken. Moreover, as also discussed in appendix [??], these symmetries
may also be broken if the A and the B sites are occupied by di�erent atoms, as in the case of a gapped
semiconductor like hexagonal boron nitrite (hBN). Additionally, see that the honeycomb lattice will
also possess a three-fold rotational symmetry about the center of the unit cell. While this symmetry is
essential for the emergence of Dirac cones in the band structure, it does not in�uence the mechanism
responsible for opening a topological gap.
Regarding time-reversal symmetry invariance, one needs �rst to note that we take the electrons to

be spinless, meaning that they are fully spin-polarized. Since we are neglecting the electron's spin
degree of freedom, the time-reversal symmetry operator reduces to a simple complex conjugation, and
thus

H(k) = H∗(−k).

See that time-reversal symmetry exchanges the two Dirac cones by mapping K into −K′. The com-
bination of time-reversal symmetries with the (approximate) sublattice symmetry will then yield a
particle-hole symmetry, expressed as

τzH
∗(−k)τz = −H(k)

2. Haldane's graphene model and chirality

The main objective of this section is to demonstrate how graphene can be driven into a quantum Hall
state, marked by the presence of chiral edge modes. The �rst crucial step, common across the broader
topological framework, is to open an energy gap in the bulk spectrum. According to the bulk-boundary
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correspondence, such a gap implies the emergence of robust edge states at zero energy. As previously
discussed, opening a gap at the Dirac points K and K ′ requires breaking the symmetries that protect
them. Speci�cally, since these gapless points are stabilized by both sublattice (or inversion) symmetry
and time-reversal symmetry, a gap can only emerge if at least one of these is broken.
A natural, yet naive, �rst approach to open a gap with such intent is to break sublattice symmetry.

As previously discussed, the simplest way to do this is by assigning an apposite onsite energy ε to
the A or B sites respectively, i.e εA = ε and εB = −ε. While this successfully gaps out the Dirac
points, on quickly realizes that it leads to a rather uninteresting scenario. Taking the limit |ε| > t,
the electronic states become strongly localized on one sublattice or the other, regardless of the sign
of ε. Crucially, this con�guration will not support any edge states. The reason why is because this
mass term preserves time-reversal symmetry, and as long as time-reversal symmetry remains intact, it
is fundamentally impossible to generate chiral edge modes.
Another, more ingenious way to gap out the Dirac cones in graphene, which is the essence of today's

model, involves introducing a complex second-neighbor hopping term t′. The resulting Hamiltonian is
known as Haldane's model and is given by

HTB(R) = H
(A)
onsite +H

(B)
onsite +H

(NN)
hopping +H

(NNN)
hopping [55]

=
∑
i

ϵAa
†
riari +

∑
i

ϵBb
†
ribri − t

∑
⟨i,j⟩

(
a†ribri+δj

+ b†rjari−δj

)
− it′

∑
⟨⟨i,j⟩⟩

(
a†riari+δj

− b†rj bri+δj

)
with ⟨⟨i, j⟩⟩ denoting the NNN sites. As illustrated in �gure [11], the NNN hopping between A sites
is taken as +it′ while the NNN hopping B sites are taken in the opposite direction, being assigned
−it′. A few key features of these second-neighbor hoppings are worth highlighting. First, see that all
the (purely imaginary) hopping amplitudes possess the same chirality, i.e their orientation follows the
direction of the reader's right hand's �ngers when the thumb points out of the plane of the lattice.
Second, these hoppings connect within the same sublattice, A to A and B to B.
Note that even a real second-neighbor hopping term would break particle-hole symmetry. This is

acceptable because particle-hole symmetry is not an intrinsic property of real graphene, but rather
a consequence of restricting hoppings to nearest neighbors. The crucial point is that breaking time-
reversal symmetry requires the NNN hopping to be complex. Speci�cally, the hopping amplitudes
acquire a direction-dependent phase, either being +it′ when hopping clockwise or −it′ when hopping
counterclockwise, relative to the six-fold rotational axis at the center of the unit cell. This asymmetry
between forward and backward hopping along these paths is the signature of time-reversal symmetry
breaking.
When a gap opens at the Dirac points, the low-energy excitations are described by a massive Dirac

equation. A crucial aspect of this mass term, represented by the σz Pauli matrix, is that it is chiral,
meaning it carries a handedness or chirality. This chirality is related to the algebraic structure of the
Pauli matrices σz = −iσxσy which encodes a handedness in the two-dimensional spinor space. This
needs context. The behavior of the mass terms at the two Dirac points depends on which symmetry
is broken. If only inversion symmetry is broken, the two Dirac points will still remain related by time-
reversal symmetry, and since time-reversal reverses chirality, the masses at the two Dirac points will
have opposite signs. This results in no net chirality as the contributions from the two valleys cancel out.
Conversely, if only time-reversal symmetry is broken, the two Dirac points will still be connected by
inversion symmetry, which preserves chirality in two dimensions. In this scenario, the masses at both
Dirac points have the same sign, resulting in a non-zero net chirality, thus characterizing a nontrivial
topological phase.

3. Gap closings are sources of Berry curvature

Before proceeding, let us brie�y recall the concepts of Berry curvature and Chern number from
section [??]. In that section, we studied the adiabatic time-evolution of a quantum state |ϕ(α)⟩ looping
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around its parametric phase-space, returning to its initial con�guration over a total time t = T along
a path C . Now, let α be the the crystal momentum k, spanning over the Brillouin zone of the system.

We saw that such a state accumulates over time a exp
(
−i
´ T
0
ε (k(t)) dt

)
phase, but in additional, also

a geometric phase γC =
´

C A(k) · dk, known as the Berry phase, with A(k) = ⟨ϕ(k)| ∇k |ϕ(k)⟩ the
Berry connection. As the geometric nomenclature suggests, it's value depends only on the path taken,
not on how the said path was performed in time. The Berry curvature, de�ned as Ω(k) = ∇k ×A(k),
then followed as the local quantity that does not su�er from the ambiguities of the Berry connection
gauge. Making use of Stokes theorem over the Brillouin zone folded in the shape of a torus we had
concluded that

‹
BZ

Ω(k) · dS = γ(2π)− γ(0) = 2πW, with W ∈ Z

the so-called Chern number topological.
It is important to emphasize that the Berry phase is ill-de�ned for non-gapped systems. This means

that the Chern number can only be computed for an isolated energy band that does not intersect
any others. To deepen our intuition on this matter, it is useful to recall the analogy between Berry
curvature and an electromagnetic �eld. Loosely speaking, a nonzero Chern number is analogous to the
presence of a magnetic monopole, as it represents a net �ux emerging from a closed surface. Moreover,
just as one cannot de�ne the electric �ux through a surface if an electric charge sits exactly on it
because the electric �eld becomes singular at the location of the charge, we similarly cannot de�ne the
Berry curvature at points where energy bands touch. In this sense, the Dirac points in out Haldane
model bands act as the "sources" or "sinks" of Berry curvature in momentum space. Note, however,
that this magnetic monopole analogy for the Berry curvature at the Dirac points is not general but
rather a special feature of the Haldane model. In general, such an intuition cannot be applied because
the speci�c distribution of the Berry curvature depends on the details of the Hamiltonian and thus
varies signi�cantly from model to model.
In �gure [11](b) we present a schematic representation of the band structure and Berry curvature

of the Haldane model, plotted as function of the ratio t′/ε. As an concrete example of the general

principles discussed above, see that, for t′/ε > −1/3
√
3, Why −1/3

√
3? Exercise to the reader. the

former Dirac point at K acts as a source of (positive) Berry curvature. Conversely, for t′/ε < 1/3
√
3,

the former Dirac point at K ′ acts as a sink of (negative) Berry curvature. We can see this by looking
at the one-dimensional band structure of a ribbon of graphene. At the in-between regime t′/ε = 0, the
contributions to the Berry curvature from the two Dirac points cancel out resulting in a total Chern
number of zero. Most importantly, when the gap closes at either of the two Dirac points, chiral edge
states appear! On the other hand, for |t′/ε| > 1/3

√
3, both Dirac points contribute Berry curvature of

the same sign, ,resulting in a nontrivial topological phase with total Chern number W = ±1. Because
the number of Dirac points in the Brillouin zone is an even number of two, and because K contributes
positively to a Berry curvature of 1/2 and K ′ negatively, this ensures that the Chern number remains
quantized an integer and changes by exactly one. Why 1/2? Exercise to the reader.

4. Chiral edge states in graphene zigzag ribbons

As we just discussed, when the gap closes at either of the two Dirac points, chiral edge states emerge.
To demonstrate that these states are of topological origin, let us consider the one-dimensional band
structure of graphene ribbons with zigzag edges, as depicted in �gure [11].
When a two-dimensional (2D) graphene sheet is cut into a ribbon, translational symmetry is pre-

served along the ribbon's longitudinal axis but broken in the transverse direction. Consequently, the
system transitions from a 2D Brillouin zone (BZ), characterized by the Bloch momentum ϕ = (ϕ1, ϕ2),
to a one-dimensional (1D) projected Brillouin zone with a single Bloch momentum component ϕ along
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the ribbon axis. The manner in which the valleys at K and K ′ are projected onto this 1D BZ depends
on the ribbon's orientation, dictated by its edge termination. In the case of a zigzag con�guration, the
ribbon axis is aligned parallel to the K ′ − Γ−K direction in the 2D BZ. As a result, the two valleys
are folded onto distinct points in the 1D BZ, yielding two separate and uncoupled valley features in
the corresponding 1D band structure. By contrast, if the ribbon is cut in an armchair con�guration,
instead with its axis oriented perpendicular to the K ′ − Γ − K direction, the two valleys are folded
onto the same point in the 1D Brillouin zone. This overlap induces hybridization between valley states
in the 1D band structure, unless protected by additional symmetries that forbid such mixing.

Let us begin our analysis by examining the zigzag con�guration within the nearest-neighbor hopping
model, which, as previously discussed, preserves particle�hole symmetry. In this model, the zigzag edge
introduces an imbalance in the number of sites belonging to each sublattice. Speci�cally, there is one
extra site of a given sublattice for every three edge unit cells, due to the unit cell being e�ectively
halved at the boundary. In contrast, the bulk, constrained by particle�hole symmetry, requires equal
numbers of sites from both sublattices. Hence, for both of these conditions to hold consistently, any
local excess of one sublattice at the edge must manifest as zero-energy modes between the two Dirac
points (see the translucent, trivial band structure in �gure [11]). Consequently, when a gap eventually
opens, these edge states must remain connected to either the conduction or valence band at each of
the two Dirac point projections. This results in four distinct con�gurations, all illustrated in �gure
[11]. This observation allows us to distinguish between two distinct scenarios, depending on whether
spatial inversion symmetry or time-reversal symmetry is broken. If, upon gap opening, the edge
states connect at the Dirac points the valence band to the valence band or the conduction band to
the conduction band, then spatial inversion symmetry is broken, as the band structure is no longer
symmetric about the Fermi level. This case is not of particular interest here. On the other hand, if
time-reversal symmetry is broken, the edge mode instead connects the valence and conduction bands,
forming a conducting channel across the gap. This is a fundamental consequence of the chiral anomaly
associated with the quantum Hall e�ect. According to the bulk�edge correspondence, a non-zero net
Chern number of the occupied bulk bands implies the existence of two chiral quantum anomalies at the
edges: one associated with non-conservation of charge density, and the other with non-conservation of
momentum density parallel to the edge.

Flow of chiral edge states
Let us further consider the case where one allows a magnetic �ux Φ is threaded through the bulk

region of the graphene ribbon, as shown in �gure [11]. When the �ux is increased incrementally by
one Dirac �ux quantum Φ0 = ℏ/e, exactly one state is transferred, either from the conduction band to
the valence band or vice versa, depending on the sign of the quantum Hall e�ect. Therefore, for such a
state transfer to occur within this model, a chiral edge state must exist and propagate unidirectionally
along the ribbon.
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Figure 11. Haldane model tight-binding hoppings. Blue berry curvature indicates a positive value and red a
negative one.

C. Quantum spin Hall e�ect

Haldane's second video on the anomalous Hall e�ect makes a great transition.

1. Kane-Mele graphene model

D. Fractional quantum hall e�ect
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Part II

Appendix
IV. OVERVIEW OF GRAPHENE SYSTEMS

A. Standard monolayer graphene

Hexagonal boron nitride (hBN) is a 2D material composed of a simple layer of alternating boron
and nitrogen atoms disposed in a planar honeycomb lattice, as shown in �gure [13](a). The Bravais
lattice

ri = ni1a1 + ni2a2, ni1, ni2 ∈ Z [56]

is generated by the real vectors basis

a1 = a0

[
+sin(30◦)

+ cos(30◦)

]
and a2 = a0

[
+sin(30◦)

− cos(30◦)

]
. [57]

where sin(30◦) = 1/2 and cos(30◦) =
√
3/2. In each diamond shaped Wigner-Seitz primitive cell

(depicted in yellow), we have one boron atom and one nitride atom, which we designate as sub-lattices
A (depicted in red) and B (depicted in blue) respectively. The atoms within the central primitive cell
are located at

sA =
a0√
3

[
0

−1/2

]
and sB =

a0√
3

[
0

+1/2

]
. [58]

where the origin is de�ned at the midpoint between the atoms. For each site A, the position of the
nearest-neighbors (NN) in the sites B are given by

δ1 =
a0√
3

[
0

1

]
, δ2 =

a0√
3

[
+sin(60◦)

− cos(60◦)

]
and δ3 =

a0√
3

[
− sin(60◦)

− cos(60◦)

]
. [59]

where sin(60◦) =
√
3/2 and cos(60◦) = 1/2. All these vectors are shown in �gure [13](a) within the

real space lattice. Furthermore, from the real lattice basis vectors, in order to ful�ll ai · bj = 2πδij ,
the reciprocal lattice basis vectors follow as

b1 =
2π

a0

[
+cos(30◦)

− sin(30◦)

]
and b2 =

2π

a0

[
+cos(30◦)

+ sin(30◦)

]
. [60]

These are also shown in �gure [13](b) together with the �rst zone of Brillouin, formed by the area
enclosed by the intersection of their bisectrices. The high-simmetry points are Γ, the origin, the Dirac
points K± and M read as

Γ =

[
0

0

]
, K± = ± 4π

3a0

[
1

0

]
and M =

2π

a0

[
+cos(30◦)/2

+ sin(30◦)/2

]
[61]

where the K point is found such that
(
M+KkxM̂⊥

)
ky

= 0, with M̂⊥ the unit vector in the perpen-

dicular direction to M. In far right side of �gure [12], we make a note that the discretized grid it's
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in the Bloch momentums basis {ϕ1, ϕ2}, i.e in the direction of the reciprocal lattice vectors, and not
simply in the reciprocal space {kx, ky}. In the Bloch momentums basis the Dirac points would reads

as K± = 2π/3a0

[
±1, ∓1

]
.

Figure 12.

Let us consider the nearest-neighbors (NN) tight-binding model, written in real space as

HTB(R) = H
(A)
onsite +H

(B)
onsite +H

(NN)
hopping, [62]

=
∑
i

ϵAa
†
riari +

∑
i

ϵBb
†
ribri − t

∑
⟨i,j⟩

(
a†ribri+δj + b†rjari−δj

)
, [63]

where the operators a†ri(ari) create (annihilate) an electron in the sub-lattice A in a given Bravais

lattice site ri, the operators b
†
ri(bri) the same but for sub-lattice B, ϵA and ϵB are the onsite energies

of site A and B respectively, and t is the hopping strength between nearest-neighbouring sites A and
B and back, denoted with ⟨i, j⟩.
Expressing the creation/annihilation operators as their Fourier counterparts,

aRi
=

1√
V

∑
k

e+ik·(Ri+sA)ak and bRi
=

1√
V

∑
k

e+ik·(Ri+sB)bk, [64]

and using the identity δ(k− k′) = 1/N
∑

i e
−iRi·(k−k′), we obtain the Hamiltonian in reciprocal space,

HTB(R) =
∑
k

ϵAa
†
kak +

∑
k

ϵBb
†
kbk − t

∑
k

(
γka

†
kbk + γ†kb

†
kak

)
, [65]

where γk =
∑

⟨j⟩ exp(+ik · δj) is complex number. If we now de�ne a row vector c†k =
[
a†k b†k

]
we

can rewrite the system's Hamiltonian as HTB
R =

∑
k c

†
kH

TB
k ck with

HTB(k) =

[
ϵA −tγk

−tγ†k ϵB

]
. [66]
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Within this simpli�ed tight-binding model, the expression for the electronic two-band structure can
easily be obtained analytically by diagonalizing the matrix in equation [66], yielding

E±
TB(k) = ±

√√√√ϵ2 + t2

[
3 + 2 cos (a0kx) + 4 cos

(
a0
√
3

2
ky

)
cos
(a0
2
kx

)]
, [67]

having de�ned the zero point energy at (ϵA + ϵB)/2 and de�ned ϵ ≡ (ϵA − ϵB)/2 at the middle of the
gap such that ϵA = ϵ and ϵB = −ϵ. The valence band corresponds to the E−

TB(k) dispersion while

the E+
TB(k) corresponds to the conduction band, as shown in �gure[13](c). The band structure is

accompanied by the density of states DoS(E) =
∑

k δ (E − E(k)) .

Notice that, if ϵA = ϵB , as is the case for graphene, we obtain ϵ = 0 and the band dispersion closes
in a linear fashion at the so called Dirac points. In hBN, the electronic band dispersion is also at its
minimum near these points but has instead a parabolic shape. In either case, this points represent a
fundamental symmetry of the system, called valley parity. To see why the dispersion is parabolic at
these valley points, we Taylor series expand the exponential of γk in equation [??] near k → K + p
with p → 0. We obtain exp(+ip · δj) ≈ 1 + ip · δj . Now, since

∑
⟨j⟩ exp(+iK · δj) = 0 we are left

with γK+p ≃ ip ·
∑

⟨j⟩ exp(+iK ·δj)δj = −
√
3a0/2 (px − ipy) . Invoking the Pauli matrices de�nitions,

from equation [66] we can write the TB Hamiltonian Hk
TB in this low-energy regime as

HTB(K+ p) = ϵσz + t

√
3a0
2

(p · σ) , [68]

which clearly resembles the 2D Dirac Hamiltonian, HDirac = σzmc
2+ c (p · σ) with ϵ taking the role of

the rest mass energy mc2 and instead with a velocity vF = t
√
3a0/2 , termed the Fermi velocity, as a

replacement to the velocity of light c. Notice that, for the case of graphene, since ϵ = 0, the electrons
would behave as if they are massless. In this limit, the hBN low-energy dispersion can be written as
the typical relativistic dispersion relation

ETB(K+ p) = ±
√
p2v2F +m2

e�v
4
F . [69]

where me� is the e�ective mass of the electron at a given point near the valleys.

Refazer esta �gura em Quantica para aprender a fazer densidade de estados. Falar das singularidades
de van Hove.
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Figure 13. hBN electronic band structure from a nearest-neighbor tight-binding model accompanied by the
density of the states. The dispersion goes along the symmetry path k : Γ → K → M → Γ and was calculated
using ϵg = 7.8eV for the energy gap, t = 3.1eV for the hopping parameter and a0 = 1.42

√
3Å for the honeycomb

lattice length. I could had here the contour band structure within the 1BZ Bloch phase space with the symmetry
path.

B. Kekulé modulation

Figure 14. Caption

C. Bilayer graphene

1. Bernal bilayer graphene

Consider a bilayer graphene model depicted in �gure [15].
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Figure 15. (a) Top view of the bilayer graphene (b) Side view of the dotted region in (a)

The tight-binding Hamiltonian of such a model reads

HBLG = Hintralayer +Hinterlayer = (Htop +Hbot) + (Hγ1
+Hγ3

+Hγ4
)

Htop =
∑
i

(ϵA − µ) c†iai +
∑
i

(ϵB − µ) b†i bi − γ0
∑
⟨i,j⟩

(
a†i bj + h.c

)
Hbot =

∑
i

(ϵC − µ) c†i ci +
∑
i

(ϵD − µ) d†idi − γ0
∑
⟨i,j⟩

(
c†idj + h.c

)
Hγ1

= +γ1
∑
⟨i,j⟩

(
b†i cj + h.c

)
Hγ3

= −γ3
∑
⟨i,j⟩

(
a†idj + h.c

)
Hγ4

= +γ4
∑
⟨i,j⟩

(
b†idj + h.c

)
+ t4

∑
⟨i,j⟩

(
a†iCj + h.c

)
Here, a site located at ri is indexed by the side index i and its next nearest neighbors located at rj are
indexed with the site index j. Of course, rj depends on the kind of hopping in questions: for γ0 it's
rj = ri+δj with j = 1, 2, 3, for γ1 it's rj = ri±az ẑ, and for γ3 and γ4 it's rj = ri+δj±az ẑ. Moreover,
let us consider an electric �eld E uniform in the plane xOy and growing along the ẑ, described by the
tight-binding Hamiltonian

HE =
∑
i

Ei

(
f†i↑fi↑ − f†i↓fi↓

)
where Ei = E× zi is the amplitude of the electric �eld at position ri, only really dependent on zi, and

f†i =
[
f†i↑ f†i↓

]
is a generic fermionic operator. Since in our bilayer model the bottom layer is situated

at z = 0 we rede�ne E(az) = E, such that

HBLG+ = E
∑
i

{(
a†i↑ai↑ − a†i↓ai↓

)
+
(
b†i↑bi↑ − b†i↓bi↓

)}
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Figure 16. (a, b) Bandstructure along symmetry path Γ → K+ → M and (c) trigonal warping of BLG around
the Dirac point K+.

2. Armchair and Zigzag con�gurations

D. Twisted bilayer graphene

E. Trilayer graphene

Make an image of of the di�erent stacking con�gurations ABC and ABA etc...
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