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PREFACE

This book originates from the foundational work undertaken during my Master's thesis, entitled
"TITLE", wherein the initial years of study were primarily devoted to the core topics presented
herein. As such, the structure and substance of this text mirror the intellectual journey of a grad-
uate student encountering the �eld of superconductivity for the �rst time. This was written from
a PhD student point-of-view with the intention of guiding fellow PhD students (or any early-career
researchers) through the essential theoretical frameworks that form the backbone of both conventional
and emerging theories of superconductivity. The material is deliberately presented in an expository
and intuitive manner, prioritizing physical insight and conceptual clarity over rigorous mathematical
derivation. This stylistic choice re�ects the pedagogical aim of the book. I wish not to exhaustively
cover each subject, but to serve as an accessible entry point into concepts that are often referenced
but rarely unpacked in detail within advanced literature. Accordingly, this work is best viewed as a
primer, one that provides a conceptual map and intuitive sca�olding for readers new to the �eld, while
simultaneously functioning as a compact memory aid for those revisiting these topics. Researchers
requiring deeper or more specialized knowledge are encouraged to consult the original papers, which
are dully noted at the beginning of each section (note yet though), that rigorously address each subject
in its full technical detail.
The rest of the preface will be written when the book is mostly �nished.
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Part I

Overview of foundational superconductivity

theories

As a precursor to topological superconductivity theory, we make a brief recap of the main supercon-
ductivity theories. Our intentions is not to make a complete mathematical description of said theories
but act more as a memory refreshment of the core ideas and concepts. Also, since this section will
serve more as consultation, we highlight the famous, useful, equations, be omitting any derivations
(although somewhat explaining it in text so one can follow). I will try to keep a linear storytelling of
the various theories with some exception of qualitatively nodding to context further ahead in the text
to strengthen intuition.

I. LONDON THEORY

The �rst theoretical explanation for the occurrence of superconductivity in metallic superconductors
was proposed by the London brothers, Fritz London and Heinz London, in 1935. They began with
the premise that if electrons in a superconductor do not encounter resistance, they will continue to
accelerate under the in�uence of an applied electric �eld. Under this notion, they formulated the Lon-
don equations, which serve as constitutive relations for a superconductor, describing the relationship
between its superconducting current and the surrounding electromagnetic �elds. While Ohm's law
represents the simplest constitutive relation for an ordinary conductor, the London equations provide
the most fundamental and meaningful description of superconducting phenomena.

A. London equations

Let us then start from the base concept of electrons accelerating with no resistance under the
in�uence of an applied electric �eld E. The equation of motion of these electrons in the superconducting
state will then read m (dvs/dt) = −eE with m, vs, e and ns their mass, velocity, charge and density
respectively. On the other hand, the superconducting current density is given by Js = −ensvs.
Di�erentiating it with respect to time and substituting dvs/dt yields the �rst London equation

dJs

dt
=
nse

2

m
E [1]

Furthermore, taking the curl on both sides, making use of Faraday's law∇×E = −∂tB, and integrating
both sides of the equation on obtains the second London equation

∇× Js = −nse
2

m
B [2]

where the constant of integration is set zero to account for the fact that there is no resistivity in
superconductors.

B. London penetration depth and Meissner e�ect

Consider Ampere's law ∇ ×B = −µ0J, with µ0 the vacuum magnetic permeability, which relates
the magnetic �eld along a closed path to the total current following through any surface bounded by
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the path. If one takes its curl from both sides and makes use the no magnetic monopole law ∇ ·B = 0
one obtains ∇2B = −µ0∇×J. Substituting the curl of the generic current J for our superconducting
current Js as given by London's 2nd equation one obtains the equation that describes the Meissner
e�ect, reading

∇2B =

(
µ0
nse

2

m

)
B ≡ 1

λ20
B [3]

where λ20 has dimension of length and is known as London's penetration depth. This equation tells us
that that the magnetic �eld is exponentially suppressed as it penetrates inward a bulk superconductor.
For example, see that a magnetic �eld B = Bẑ that penetrates a superconductor within the semi-
in�nite plane xOz is damped as B(x) = B0 exp(−x/λ0)ẑ while inside the superconductor.
This exclusion of magnetic �eld is a manifestation of the superdiamagnetism emerged during the

phase transition from conductor to superconductor, for example by reducing the temperature below
critical temperature. In the presence of a weak external magnetic �eld�one that is below the critical
threshold for the breakdown of superconductivity�a superconductor nearly completely expels the
magnetic �ux by generating electric currents in a thin layer near its surface. Speci�cally, the magnetic
�eld induces a magnetization within the London penetration depth, which in turn establishes screening
currents. These currents serve to protect the superconductor's internal bulk from the external �eld.
Moreover, because the �ux expulsion remains invariant over time, the so-called persistent (or screening)
currents sustaining this e�ect do not decay.
See that this penetration depth is inversely proportional to the square root of the electron density in

the superconductive state ns, which in turn should depend on temperature. Concretely, one expects
that as the temperature rises, ns decreases and, consequently, the extent of �ux penetration increases.
At some critical temperature Tc, ns drops to zero, allowing the magnetic �eld to fully penetrate the
material and causing the superconductor to revert to its normal state. The London brothers did
not �nd exactly what this temperature dependence law should look and mostly miscalculated λ0 of
di�erent materials just because ns could not be merely treated as a free electron density as it is done on
metals; rather, the electrons in these superconductive phase were latter found to interact coherently.
The actual temperature-dependent London penetration depth will be described in the next section.

C. London coherence length

In addition to the London penetration depth λL, there is another fundamental length scale that
governs superconducting behavior. Together, these two length scales play a crucial role in de�ning the
properties of a superconductor.
While λL characterizes the extent to which an external magnetic �eld can penetrate a supercon-

ductor, ξ de�nes the spatial region over which the superconducting electron density remains relatively
uniform, preventing abrupt variations in the presence of a non-uniform magnetic �eld. This distinction
is particularly relevant in the context of the London equation, which establishes a local relationship
between the supercurrent density Js(r) and the vector potential A(r), requiring the Js(r) to follow
exactly any spatial variations in A(r). The coherence length sets a natural limit to this locality, repre-
senting the characteristic distance over which the vector potential must be averaged to determine the
corresponding supercurrent density.
Any deviation from spatial uniformity incurs an additional kinetic energy cost, in other words, that

any modulation of the superconducting wavefunction ψs(k, r) identi�ed by it's momentum state k cost
the system energy. Concretely, the increase of energy required for a modulation ψs(k, r) → ψs(k+q, r)
with |q| ≪ |k| corresponds to δE = ℏ2|k||q|/2m. However, if δE exceeds the superconductive energy
gap Eg, superconductivity will be destroyed. The critical value q0 at which this happens is given
Eg = ℏ2|kF ||q0|/2m with kF the momentum at the Fermi surface. We can then de�ne an intrinsic
coherence length ξ0 related to this critical modulation as ξ0 = 1/q0 reading
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ξ0 =
ℏ2kF
2mEg

[4]

As an additional complication, understand that both the coherence length ξ and the penetration
depth λ of superconductors must be in�uenced by the mean free path of electrons ℓe in the normal state.
For now we do not know their speci�c dependence on ℓe but we can at least guess for it qualitatively
by considering the nature of the electron's wavefunctions in disordered systems. In a so-called dirty
superconductors, one that has a smaller mean free path of electrons, the wavefunction exhibits inherent
spatial �uctuations due to disorder. This means that a localized variation in current density can
be constructed with lower energy using these pre-existing wiggled wavefunctions, as opposed to the
smoother wavefunctions found in a pure superconductor, where greater energy would be required to
introduce similar variations. Hence, one can expect that ξ < ξ0 for smaller ℓe. One the other hand,
since the ability to screen an external magnetic �eld depends on how e�ectively the supercurrent can be
set up across the sample. In the dirty limit the superconducting electrons will not be able to coordinate
over long distances resulting in an overall weaker screening currents. Weaker screening means that the
magnetic �eld penetrates deeper into the material, and thus one can also expect λ > λ0 for smaller ℓe.

II. GINZBURG-LANDAU THEORY

Historically, the Ginzburg-Landau (GL) framework was introduced before the microscopic BCS the-
ory of superconductivity. Although it was initially developed on largely phenomenological grounds,
later work showed that it can be derived from the microscopic theory in certain limits. As a re-
sult, Ginzburg-Landau theory remains a cornerstone for describing superconductors near their critical
temperature, providing both qualitative insights and quantitative tools for analyzing a wide range of
superconducting phenomena.
Ginzburg-Landau theory o�ers a phenomenological way to understand how systems transition into

the superconducting state building on the broader concept of second-order phase transitions at a
given critical temperature. In this sense, one introduces an order parameter that captures how the
system reorganizes itself at the threshold of the transition. This is analogous to how a ferromagnet
spontaneously picks a magnetization M direction. When the system is in its non-magnetic state the
magnetization is e�ectively zero, but as the temperature cools below a given critical temperature Tc
(dubbed Curie temperature for the case of ferromagnets) it acquires a nonzero value.
Ginzburg-Landau theory clari�es the relationship between the two London's characteristic length

scales�the penetration depth λ which quanti�es how far magnetic �elds can penetrate into the super-
conductor, and the coherence length ξ which quanti�es how quickly the order parameter can change
in space. The balance between these scales determines whether a material expels magnetic �elds
completely, dubbed type I superconductors, or admits them in quantized �ux tubes, dubbed type II
superconductors.

A. Superconductive order parameter

For superconductors, Ginzburg and Landau proposed that this order parameter is not just a simple
number but a complex quantity that can vary in space, namely

Ψ(r) = |Ψ(r)|eiϕ(r) [5]

whose magnitude |Ψ(r)| and phase ϕ(r) convey key features of superconductivity. The e�ective number
density of electrons ns on the superconductive state is related to this magnitude, concretely ns =



10

|Ψ(r)|2, and the current �owing locally at a given point r is related the gradient of the phase, concretely
|∇ϕ(r)|2. Intuitively you can think of the magnitude as how �strong� the superconductivity is while the
phase is instead related to collective quantum behavior that underlies phenomena such as persistent
currents and �ux quantization. Moreover, since this order parameter is smoothly varying in space he
needs not be uniform near boundaries or in the presence of impurities.
Peierls substitution
The intuition behind this superconductive order parameter ansatz has its roots on the Peierls sub-

stitution. Consider the time-dependent Schrodinger equation describing of the so called Hofstadter
Hamiltonian,

iℏ
∂

∂t
ψ(r, t) =

[
iℏ∇r − e

cA(r)

2m
+ eU(r, t)

]
ψ(r, t). [6]

with U(r) a generic scalar potential, for example the crystal lattice potential landscape. Furthermore,
consider that one adds a local phase shift to the wavefunction as

ψ(r, t) → e
ie
ℏcΛ(r,t)ψ(r, t) [7]

Substituting this ansatz directly into the time-dependent Schrödinger equation one obtains

e
ie
ℏcΛ

(
iℏ
∂

∂t
− e

c

∂Λ

∂t

)
ψ = e

ie
ℏc

1

2m

(
−iℏ∇− e

c
A+

e

c
∇Λ + 2meU

)2
ψ

where we have omitted the spacial and temporal dependency for simplicity. See that if one now de�nes
the potentials as

A → A+∇Λ

U → U +
1

c

∂Λ

∂t

one recovers the original equation. This means that applying the gauge transformation (meaning that
there exists other physical descriptions of the system that leaves the free energy unchanged) to A and
U is equivalent to multiplying the state by a phase factor, albeit one that changes in space and time.

B. Ginzburg-Landau free energy

The Ginzburg-Landau theory is formulated by employing a minimization of the Helmholtz free
energy density fs (thermodynamic potential that measures the useful work that a system held at
constant temperature can perform) in terms of |Ψ(r)|2 and |∇Ψ(r)|4 under constraints imposed by
external parameters such as temperature T and magnetic �eld H with respect to variations in the
order parameter Ψ and the vector potential A. Understand that you cannot have powers of Ψ(r) in
fs because it must be real; nor can you just expand it terms of Re{Ψ(r)} since fs must not depend on
the absolute phase of Ψ(r). Moreover, odd powers of |Ψ(r)|2 are also excluded because they are not
analytic at Ψ(r) = 0.
As we will see, this procedure results in a set of coupled di�erential equations governing the behavior

of the order parameter Ψ(r), dubbed the 1st GL equation, and the electromagnetic vector potential
A(r), dubbed the 2nd GL equation. This interplay between the spatially varying superconducting
order parameter and the electromagnetic �eld lies at the heart of the Ginzburg-Landau description.
The fundamental GL postulate asserts that if the magnitude of order parameter is small and varies

gradually in space (local electrodynamic approximation) then the Helmholtz free energy density fs
near the transition temperature Tc can be expanded into the power series expansion
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fs(T ) = fnormal + fcondensate + fkinetics + fmagnetic

= fn +

[
α(T )|Ψ(r)|2 + β(T )

2
|Ψ(r)|4

]
+

ℏ2

2m∗

∣∣∣∣(∇− ie∗

ℏc
A(r)

)
Ψ(r)

∣∣∣∣2 + H2

8π
[8]

with fn the Helmholtz free energy density in the normal state, α and β some phenomenological
parameters to be determined experimentally (in conventional BCS superconductors these parameters
be derived from microscopic theory), e∗ and m∗ the e�ective charge and mass of the superconducting
carriers respectively, A(r) the electromagnetic vector potential, and B = ∇×A the external magnetic
�eld magnitude. The 2nd and 3rd terms correspond to the condensation free energy density, allures
to the fact that the superconducting state is to be more ordered than the normal state, the 4th term
corresponds to the kinetic energy density of the charged superconducting carriers in the presence of
a magnetic �eld leading to supercurrents (the 2nd of its term to be precise), and the 5th term to the
energy density associated with the magnetic �eld itself.

Bulk solutions (absence of �eld and currents)
Deep inside the bulk of the superconductor, several London penetration length's in, if the system

is at the critical temperature T = Tc then the Helmholtz free energy density at the phase transition

must be continuous, i.e that fs(Tc)−fn(Tc) = α(Tc)|Ψ∞|2+β(Tc)/2|Ψ(Ψ∞)|4 !
= 0, with Ψ∞ the order

parameter in the deep bulk regime notation. One the hand, minimizing fs with respect to |Ψ(r)|, one
obtains that

|Ψ∞|2 !
= n∗s = −α

β
[9]

Substituting back into the previous condition one �nds that

fs(Tc)− fn(Tc) = −α(Tc)
2

2β(Tc)
≡ −Hc

8π
[10]

with Hc the critical magnetic �eld. See that the β(T ) parameter must always be positive, even if
α(T ) > 0, because otherwise there would be a �nite potential barrier that, if crossed, would result
in in�nite free energy. Oppositely, the α(T ) parameter can take whatever value. If α(T ) ≥ 0 the
minimum free energy occurs at |Ψ(r)| = 0, corresponding to the normal state since ns = |Ψ(r)|2
states no density of electrons on the superconductive state. One the other hand, if α(T ) < 0 then the
minimum free energy occurs at |Ψ(r)| > 0, corresponding to the superconductor state since it gives a
lower free energy state (see �gure [1]).
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Figure 1. Ginzburg-Landau theory Helmholtz free energy density fs

Temperature dependency
Since the α(T ) must change from positive to negative at T = Tc let us make a Taylor's series

expansion around Tc but keeping only the linear term, reading α(ts) = αs(1− ts) with ts = T/Tc and
αs < 0, such that in the normal phase T > Tc ⇒ ts < 1 ⇒ α(ts) ∝ αs < 0 and in the superconducting
phase T < Tc ⇒ ts > 1 ⇒ α(ts) ∝ −αs > 0. Inserting the empirical notations that Bc ∝ (1 − t2s)
one can then infer deep that inside the bulk the temperature dependent behavior of the London's

penetration length goes like λ(ts) ∝ |Ψ∞ (α(ts), Hc(ts))|2 ∝
(
1− t4s

)−1/2
.

C. Ginzburg-Landau equations

Minimizing the total Helmholtz free energy density Fs =
´
V d

3rfs(r) over the volume V of the
superconductive system with respect to the variation of the order parameter Ψ∗(r) why the complex
conjugate though? gives us the 1st Ginzburg-Landau equation

αΨ(r) + β|Ψ(r)|2Ψ(r) +
1

2m∗

(
−iℏ∇r −

e∗

c
A

)2

Ψ(r) = 0 [11]

See that, apart from the nonlinear term, this equation has the form of a Schrodinger equation for
particles with energy eigenvalue −α within the same conditions. The nonlinear term acts like a
repulsive potential of Ψ(r) on itself, tending to favor wavefunctions Ψ(r) which are spread out as
uniformly as possible in space.
One the other hand, the variation of vector potential A gives us the 2nd Ginzburg-Landau equation

Js =
e∗

m∗ |Ψ(r)|2
(
ℏ∇rϕ(r)−

e∗

c
A(r)

)
≡ e∗|Ψ(r)|2vs [12]

which shows us that also the superconductive current resembles quantum mechanical expressions in
the same conditions, concretely the current of probability with the caveat of having an e�ective number
density ns = |Ψ(r)|2, mass m∗ and charge e∗. In the original formulation of the theory it was assumed
without much thought that e∗, m∗ and n∗s corresponded to their normal electronic values however
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experimental data surprisingly suggested a better �t for e∗ = 2e, m∗ = 2m and n∗s = 1
2ns. For us

time travelers this obviously screams Cooper pairing of electrons as predicted by the microscopic BCS
theory. See that the relation λ = nse

2/m = n∗se
∗2/m∗ still holds though, ensuring that the London

penetration depth remains unchanged due to the pairing mechanism. Notably, see that a decrease in
the order parameter results in an increase in the penetration depth.
Boundary conditions
As an additional and relevant detail, remember that along the variational procedure one must even-

tually provide a choice of boundary conditions of the superconductive volume. Indeed, in GL theory
the boundary condition is that of an insulating surface such that it is ensured that no supercur-
rent leaks through the superconductor, i.e Js · n = 0 at the interface. Concretely, this means that
(−iℏ∇r − e∗/cA(r))Ψ(r)⌋n = 0. From the microscopic theory de Gennes latter shown that the right
side, rather then zero, should read instead iℏ/Ψ(r)b with b a real constant. If at the interface A = 0
then b corresponds to the extrapolation length to the point outside the boundary at which Ψ would
go to zero if it maintained the slope it had at the surface. The value of b will depend on the nature of
the material to which contact is made, approaching b = 0 for a magnetic material and b = +∞ for an
insulator, with normal metals lying in between.
GL coherence length
Let us consider a simpli�ed one-dimensional case were no magnetic �eld are present (A = 0) and

analyze GL 1st di�erential equation in equation [11]. See that, in this case, Ψ(r) get to be real

since the equation only has real coe�cients. Introducing the normalized wavefunction Ψ̃ =
√
β/|α|Ψ

with α = −|α| the (one-dimensional) equation becomes ξ2∂2xΨ̃ + Ψ̃ − Ψ̃3 = 0 where we identi�ed the
characteristic length ξ of the order parameter variations as ξ = ℏ2/

(
2m∗2 |α(T )|

)
. This is known as

the GL coherence length which, as the name implies, plays the same role as the same as London's,
describing the distance over which the superconductor can be represented by a wavefunction. Moreover,
for my time-travelers fellows, this can also be understood as the distance over which Cooper pairs can
be considered to be correlated. Within the deep bulk (A = 0) the order parameter ψ̃ will not vary in

space and thus one can solve the equation by setting the boundary conditions ∂xΨ̃ = 0 and Ψ̃2 = 1.
One obtains

Ψ(x) =

√
|α|
β

tanh

(
x√
2ξ

)
[13]

D. Flux quantization

Consider a superconductor ring with a magnetic �ux Φ passing through it's perforation inducing
a persistent current Js coursing trough it's "inner" "surface" as to counter act the magnetic �eld in
the bulk within a penetration depth λ. Now, consider a circular path C within the deep bulk of the
ring far away from any persistent currents, such that

¸
C Js · dℓ = 0 with Js given by the 2nd GL

equation in equation [12]. Since the system is de�ned at its minimal energy con�guration the order
parameter within the deep bulk Ψ∞ must have a unique value at every point along the circular path.
This leaves us speci�cally with

¸
C vs · dℓ = 0 which is trivial to solve for. For the 1st term, one has

that
¸
C ∇rϕ(r) · dℓ = 2πn, since ϕ(r) goes around in a circle and back to here it started acquiring a

phase of 2π for each n ∈ Z lap, and for the 2nd term one obtain, by de�nition, the magnetic �ux Φ,
since

¸
C A(r) · dℓ =

¸
S ∇×A(r) · dS =

¸
S B · dS = Φ with S the surface spanning the over the hole.

Note that n ̸= 0 requires that the contour cannot be contracted to a single point, meaning that the
sample must always contain a hole, as it has in our case. Combining this results one obtains (with the
foresight substitution e∗ = 2e)

Φ = n
hc

2e
≡ nΦ0, [14]
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meaning that the �ux through the ring is actually quantized in integral multiples of Φ0, the �ux
quantum, also known as �uxoid. Bear in mind the subtlety that it's the total �ux Φ = Φs + ΦH

that is quantized, i.e the sum of the �ux from external magnetic �eld ΦH and the �ux from the from
the persistent superconducting currents Φs. Since there is no quantization condition on the external
sources then Φs itself must adjust appropriately in order that Φ assumes a quantized value.
GL coherence length
As a quick side note, see that putting together equation [10] and equation [9] along with London's

penetration length de�nition in equation [3] and the �uxoid de�nition in equation [14] one can expresses
the GL coherence length as

ξ(T ) = − Φ0

2
√
2πHc(T )λ∗

[15]

E. Type I and type II superconductors

As previously discussed, although currents can �ow without any energy dissipation in superconduc-
tors, there are certain limitations; the material must operate below a given critical temperature Tc but
also under magnetic �eld strengths below a critical value Hc(T ). With regard to their magnetic prop-
erties, particularly in the way they expelled magnetic �elds superconductors can then be categorized
into one of two types, simply named type I and type II.
On one hand, type I superconductors exhibit a sharp normal-superconductive phase transition with

all magnetic �ux being expelled while in the superconductive phase while type II superconductors
exhibit an additional in-between "mixed state", also refereed to as "vortex state", where there is partial
penetration of �ux. This partial penetration occurs as a mechanism to minimize the overall magnetic
energy. Surrounding these small localized regions of partial penetration �where the magnetic �eld is
high enough to revert the superconductor into its normal phase�are circulating vortices of quantized
screening currents that oppose the magnetic �eld guaranteeing that the material outside these regions
remains in the superconducting state. This process by which superconductivity "kicks o�" in small
localized pockets is often referred to as nucleation. Understand that, although the sample is not
locally superconducting in those regions, it can still have zero electric resistance as a whole since
the currents predominantly �ows through the superconducting areas. Moreover, understand that to
maintain a lossless state these vortices must be pinned in place, for example, by defects within the
crystal structure, or else they will move and generate a voltage leading to dissipation.
Another way to qualitatively understand this two types of superconductivity is by examining the

interaction energy between superconducting vortices. Rather then performing a full explicit derivation,
we can gain insight by considering the broader picture.
The derivation of the vortex interaction energy begins with determining the shape, and consequently

the energy, of an individual vortex. This is realized by solving the �eld equations in cylindrical
coordinates for a non-constant Ψ(x), as we are dealing with local defects. In this choice of coordinates,
the equations take the form of coupled nonlinear di�erential equations. An important detail in this
derivation is that to compute the vortex energy per unit length, one must introduce a cuto�, which
re�ects the fact that a vortex can only exist within a �nite-sized system.
Once the energy of the individual vortices is known, one goes to �nds the energy of the entire system

and then subtract them o� to obtain the interaction energy between superconducting vortices. It reads
Eint ∝ d/λ−

√
2d/ξ with d the distance between the vortices. This expression reveals two competing

e�ects: a repulsive interaction caused by vortex currents circulating in opposite directions (analogous
to the force between two parallel wires carrying currents in opposite directions) and an attractive
interaction caused by the fact that a superconductor energetically favors a defect-free state, it tends
to restore order by merging vortices whenever possible. The balance between these opposing forces
determines whether vortices attract or repel. Quantitatively, what governs the nature of this interaction
is the ratio between the GL coherence length ξ(T ) and London's penetration depth λ(T ), known as the
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GL parameter κ = λ(T )/ξ(T ). See that apart from being a dimensionless quantity, since both λ(T )

and ξ(T ) diverge as
√
1− T/Tc with temperature, κ is also temperature independent. If κ > 1/

√
2

the repulsive interaction dominates and thus the vortices repel from each other, arranging themselves
into regular periodic structures, typically a triangular lattice. Since each vortex carries a quanta of
�ux Φ0 this results in partial penetration of the magnetic �eld, a hallmark of type II superconductors.
Conversely, if κ > 1/

√
2, the attractive interaction prevails, leading to the agglomerate and collapse

of all vortices into a single entity. In this case, the superconductor has no mechanism to sustain �ux
penetration and instead exhibits the Meissner e�ect, a hallmark of type I superconductor.

Figure 2. The nomenclature type I and type II will be made clear after Ginzburg-Landau theory, for now think
of it as simply pure and dirty, respectively

F. Little-Parks experiment

Instead of the ring, consider now a superconducting cylindrical thin-�lm shell of radius R and
thickness ℓ with a magnetic �ux ϕ passing through its perforation. Speci�cally, we consider the shell
to be so thin so that ℓ ≪ ξ(T ) with ξ(T ) the London's coherence length. In this case, any small
deviation of |Ψ(r)| would mean an excessively large |Ψ(r)|2 contribution to the free energy which
is not physically realistic. To correct this problem one then needs to approximate the magnitude
to a uniform value, i.e Ψ(r) = Ψ0. In this conditions the Helmholtz free energy density fs would
approximately read f thins ≈ fn + (α + κ)|Ψ0|2 + β/2|Ψ0|4 + H2/8π with κ = 1/2m∗v2s the kinetic
energy of the superconducting current. Moreover, we further neglect the free energy term associated
with the external magnetic �eld because it is is smaller than the kinetic energy by a ratio of πR2 to
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1/λ2. The optimal value of |Ψ0|2 is then found by minimizing f thins , for a given vs, reading

|Ψ0|2 = Ψ∞

[
1−

(
ξ(T )m∗vs

ℏ

)2
]

[16]

From the previews quantization condition Φs = nΦ0 − ΦH we already know what the supercurrent
velocity vs should be, it reads as the ΦH/Φ0-periodic function vs = ℏ/(m∗R) (n− ΦH/Φ0).
Let us analyze what happens at the normal-superconductor phase transitions. Substituting directly

into equation [16] the supercurrent velocity vs in it's ΦH/Φ0-periodic form and setting |Ψ0|2 = 0 one
�nds that, through the temperature dependence of the coherence length ξ(T ) in equation [??], there
will be a periodic variation δTc of the critical temperature Tc, concretely

δTc(H)

Tc
∝



ξ20
R2

(
n− ΦH

Φ0

)2

for a pure SC

ξ0ℓ

R2

(
n− ΦH

Φ0

)2

for a dirty SC

[17]

This is known as the Little-Parks e�ect. See that the maximum of the depression of Tc occurs when
n− ΦH/Φ0 = 1/2.

Figure 3. (left) �uxoid (right) Little-Parks e�ect. Need also a plot of the curve for the order parameter, and
a small paragraph making the connection between the two.

G. Josephson e�ects

This sections needs a lot more research and work. . I want a clear, basic, linear, intuitive intro-
duction, I don't want it to be heavy on the math and have to much tangents. I'm working on the
�gures and plots for this. At the end I want to start with hits to topology and Majoranas with the 4π
Josephson e�ect.
The Josephson e�ect occurs when two superconductors are weakly coupled through a very thin

barrier, which may be an insulator, a metallic weak link, or any physical constriction that weakens
superconductivity. Within the framework of BCS theory, the weak coupling allows for a probability of
Cooper pairs tunneling from one superconductor to the other. Due to the phase coherence embodied
in the superconducting order parameter, a supercurrent will �ow even in the absence of an applied
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voltage. This phenomenon arises from the spontaneous symmetry breaking in the superconducting
state, leading to both steady (DC) and oscillatory (AC) tunneling e�ects.
In the absence of an applied voltage, the relative phase di�erence between the superconductors

remains constant over time, resulting in a steady tunneling supercurrent. The free energy of the
system minimized when the order parameters of the two superconductors are optimally aligned. Any
deviation from this alignment (i.e., any phase di�erence) introduces a coupling energy that drives
a current. The system reaches a stable state as long as the phase di�erence is maintained and the
supercurrent does not exceed a critical value. Conversely, when a constant voltage is applied across
the junction, the phase di�erence no longer remains static. Instead, it evolves linearly over time in
an oscillatory manner, leading to an alternating current. Despite the applied voltage being constant,
the tunneling supercurrent alternates with a frequency (known as the Josephson frequency) that is
directly proportional to the voltage. This remarkable voltage-to-frequency conversion is the basis for
many precision voltage standards.

DC Josephson e�ect

Consider a very thin weak link between two superconductor pieces as shown in �gure [??]. Let
the phase of order parameter of the left-side superconductor be ϕL for x < ξL and ϕR for x > ξR
for the right-side superconductor such that at the weak link, set at x = 0, it's phase may change
rapidly by a very small perturbation (besides the amplitude |Ψ| being exponentially small). Also, let
|Ψ| = |ΨL| = |ΨR| and ξ = ξL = ξR.
As introduced in the Ginzburg-Landau equations subsections, the boundary conditions (−iℏ∂x − e∗/cAx)Ψ⌋ξL =

bΨR where, in this case, b is a small number depending on the properties of the weak link. More-
over, time inversion symmetry demands this boundary conditions to remain valid both Ψ → Ψ∗ and
A → −A, inferring that b must be real as long as the phase ϕ does not depend on A. Hence, for the
moment, let us pick appropriate gauge in which Ax = 0 such that ∂xΨ⌋ξL = i/ℏbΨR. The supercur-

rent density at x = ξL can then be found from J⌋ξL = ℏe∗/2im∗
(
Ψ∗

L ∂xΨ⌋ξL −ΨL ∂xΨ
∗⌋ξL

)
which

correspond to the supercurrent

I = Ic sin (φ) = Ic sin (ϕR − ϕL) [18]

with the prefactor being the Josephson junction critical current Ic = bℏe∗/m∗ de�ned at ϕR = ϕL±π/2,
depending upon the junction strength b. On the other hand, if there is no phase di�erence, i.e ϕR = ϕL,
no current will �ow. A mechanical analog of this equation would be a system of coupled pendulums
in the sense that no energy is exchanged if the pendulums are oscillating in phase or out of phase.

AC Josephson e�ect

Let us now consider the case when a constant voltage V is applied across the junction such that the
phase di�erence no longer remains static.
We start from the time-evolution of the gauge-invariant phase di�erence between the two supercon-

ductor, also known as Josephson phase φJ(t), following directly from the �ux quantization condition
introduced in the subsection of the same name. It reads

φ̇J(t) = ϕ̇R(t)− ϕ̇L(t)−
e∗

ℏ

ˆ ξR

ξL

dxȦx(x, t). [19]

Since we are dealing with semi-in�nite superconductors at equilibrium one can take the phases ϕR
and ϕL within that bulk to be so slowly varying in time such that any time variation of is negligible
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compared to the contribution from the vector potential. As for the second term, we know that the
applied voltage in an purely inductive gauge, i.e with no electrostatic di�erence between the two
superconductors, meaning

´
∇ϕE · dℓ = 0, is solely given by the time-variation of the magnetic

vector potential V =
´
Ȧ · dℓ. Putting the two expression together one obtains V = −e∗/ℏφ̇J(t), a

superconducting analog to electromagnetism Faraday's law of induction with the distinction that the
voltage does not come from magnetic �ux (there isn't even any in the bulk) but rather from the kinetic
energy of the superconducting carriers. This phenomenon is also known as kinetic inductance. The
phase di�erence is then as depending linearly on time given by φJ(t) = ωJ t with ωJ = −V e∗/ℏ the
Josephson frequency. This is often called the called the second Josephson relation or superconducting
phase evolution equation. Finally, the corresponding supercurrent wields

I = Ic sin (φJ(t)) = sin (ωJ t) , [20]

which is known as the �rst Josephson relation or weak-link current-phase relation.
As a supplementary detail on the electromagnetism comparison, from the two Josephson relations one

can then derive the explicit expression for the kinetic inductance L(φJ) by straightforwardly applying
the chain rule to calculate the time derivative of the current and rearrange the result in the form of a
current�voltage characteristic of an inductor. One obtains L = LJ/ cos(φJ) with LJ = Φ0/(2πIc) the
Josephson inductance.

Inverse AC Josephson e�ect

Let us now consider the case where, instead of applying a DC voltage which has lead to an AC
superconducing current, an external (microwave) AC voltage is applied to the junction. As we will see,
under the right conditions the junction's phase locks to the external drive leading to the appearance of
DC superconducting quantized current plateaus, known as Shapiro steps. We refer to this phenomenon
as the inverse AC Josephson e�ect, as it involves frequency-to-voltage conversion rather than the other
way around.

Figure 4. Josephson e�ects (a) DC (b) AC (c) inverse AC

SQUIDs

Let us now expand on the unidirectional one-dimensional model by connecting the other end point of
the superconductors as to form a superconducting loop of two Josephson junctions. Moreover, consider
a �ux Φ �owing thought it's perforation. This device is know as a SQUID, a superconducting quantum
interference device, being depicted in �gure [??].
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In this system, each of the two half loops will acquire di�erent phases equal to 2πΦ/Φ0 and the
current will be maximum when the phase di�erence is an even multiple of π and minimum when the
phase di�erence is an odd multiple of π. One can intuit that the supercurrent, either in the will become
oscillatory when plotted against the magnetic �ux.

In this case, the phase di�erence will change with the �ux in the ring, which is quantized, wielding
instead the supercurrent

I = Ic

[
sin (ϕR − ϕL) + 2π

Φ

Φ0

]
[21]

III. BARDEEN�COOPER�SCHRIEFFER THEORY

Bardeen�Cooper�Schrie�er's (BCS) theory of superconductivity was a watershed in modern con-
densed matter physics. It's key feature is pair condensation, the macroscopic occupation of a bound
state of fermion pairs. The binding of fermions into Cooper pairs typically leads to an energy gap in
the fermionic excitation spectrum, while condensation of Cooper pairs leads to the breaking of global
U(1) gauge symmetry. This symmetry breaking is linked to the spontaneously choosing of an overall
phase φ of the macroscopic wavefunction below the transition temperature Tc (akin to how a ferro-
magnet spontaneously picks a magnetization direction) and it's generator is the particle number, being
related to the fact that φ and N are canonical conjugate (well, technically only for larger values of
N but this is often the case). In BCS superconductivity considerations, φ is precisely the (conjugate
of the) number of Cooper pairs formed. Furthermore, the symmetry breaking of U(1) implies that
the fermionic excitations are no longer charge eigenstates, but each is a coherent superposition of a

normal-state particle and hole, e.g. γkσ = ukckσ + v
∗
kc

†
−kσ̄, with c/c

† the electronic �eld operators and
where u and v are the particle and hole amplitudes (de�ned by momentum k and spin σ [σ̄ being the
�ipped spin]) de�ning the so called Bogoliubov quasi-particles (or Bogoliubons). Charge conservation
is then maintained by an additional channel for charge transport via the coherent motion of the pair
condensate. One can then construct the ground state of the superconductor |∅⟩ (also denoted as |GS⟩ or
|BCS⟩) from the condition that it contain no Bogoliubons, γ |∅⟩ = 0, wielding a superposition of states

with di�erent number of Cooper pairs |∅⟩ =
∏

k(uk + vkc
†
kσc

†
−kσ̄) |0⟩ , with |0⟩ the state containing no

electrons.

Expanding beyond conventional BCS, we can distinguish other types of superconductivity by the
characteristics of the pair condensation. In conventional BCS superconductors (SCs), the electrons are
being Cooper paired with opposite spins, forming a S = 0 spin-singlet state, but it possible to Cooper
pair electrons with parallel spins forming three possible S = 1 spin-triplet states without violating Pauli
principle. Concerning with the orbital component we can also distinguish between di�erent angular
momentums ℓ = 0(s), 1(p), 2(d), 3(f) and so on. As a �rst order approximation, one can match the
orbital component to the shapes of spherical harmonics, although, of course, with the caveat that
the crystal lattice and Fermiology can make the situation more complex in real materials. Because
Fermions obey antisymmetric exchange (switching two electrons corresponds to a sign change), if the
spin part of the wavefunction is antisymmetric, as is the case for the singlet case, then the orbital part
has to be even, ℓ = 0, 2, .... Of course, for the same reason, the triplet case must have instead odd
orbital part, ℓ = 1, 3, ....
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A. Fröhlich e�ective phonon-mediated electron-electron interaction

B. E�ective Hamiltonian

To investigate the onset of superconductivity, consider the e�ective Hamiltonian

H = H0 +Hint

=
∑
kσ

ξkc
†
kσckσ +

1

N

∑
kk′

Vkk′c†k↑c
†
−k↓c−k′↓ck′↑

with ξk = εk − µ the k-state energy apart from the chemical potential shift µ and where c†kσ (ckσ)
creates (annihilates) an electron with momentum k and spin σ. See that the second term describes
the destruction of two electrons with opposite momenta and spin simultaneously and the subsequent
creation of another. We call this paring of electrons, with opposite momenta and spin, a Cooper pair.
To proceed, we perform the usual mean-�eld decoupling of the quartic term, reading〈

c†k↑c
†
−k↓c−k′↓ck′↑

〉
≈
〈
c†k↑c

†
−k↓

〉
c−k′↓ck′↑ + c†k↑c

†
−k↓ ⟨c−k′↓ck′↑⟩ −

〈
c†k↑c

†
−k↓

〉
⟨c−k′↓ck′↑⟩ , [22]

In this mean-�eld scheme the e�ective Hamiltonian reads

H =
∑
kσ

ξkc
†
kσckσ −

∑
k

(
∆kc

†
k↑c

†
−k↓ +∆∗

kc−k↓ck↑

)
+
∑
k

∆k

〈
c†k↑c

†
−k↓

〉
[23]

where we have de�ned the

∆k = − 1

N

∑
k′

Vkk′ ⟨c−k′↓ck′↑⟩ , [24]

known as the gap function. For now there is no reason to call it a gap for now, but we will discuss its
meaning very soon.
Furthermore, in order to express this Hamiltonian in its diagonal form we employ the so-called

Bogoliubov transformation

ck↑ = u∗kγk↑ + vkγ
†
−k↓

c†−k↓ = ukγ
†
−k↓ − v∗kγk↑

[25]

where we have de�ned new fermionic operators γkσ and coe�cients uk, vk whom, in order for the
fermionic commutation relations to be satis�ed, must satisfy the normalization condition |uk|2+|vk|2 =
1. Substituting directly into the Hamiltonian one �nds that additionally the condition

2ξkukvk −∆ku
2
k +∆∗

kv
2
k = 0 ⇒ vk

uk
=

√
ξ2k + |∆k|2 − ξk

∆∗
k

[26]

must be held in order to express the Hamiltonian in it's diagonal form. Notice that we picked only the
positive root to ensure that the energy of the BCS state is a minimum and not a maximum. Moreover,
notice that because the numerator is real, the phase of the complex gap function ∆k must be the same
as the relative phase between vk and uk. Since we can set the phase of uk to be zero without loss of
generality, it follows that the phases of vk and ∆k are the same. This yields the de�nitions

|uk|2 =
1

2

(
1 +

ξk
Ek

)
and |vk|2 =

1

2

(
1− ξk

Ek

)
with Ek =

√
ξ2k + |∆k|2 [27]



21

the excitation energy. The e�ective Hamiltonian then follows as

H =
∑
kσ

Ekγ
†
kσγkσ + E0 with E0 =

∑
k

(ξk − Ek +∆k)
〈
c†k↑c

†
−k↓

〉
[28]

the energy of the BCS ground state, denoted by |∅⟩ (often also as|ψBCS⟩). It becomes clear from this
equation why we called ∆k the gap function. Even at the Fermi level, where ξ2k, the energy spectrum
of the superconductor has a gap of size |∆k| meaning that we need a minimum energy of 2 |∆k| to the
system to excite its quasiparticles, usually called Bogoliubons (the ones described by the γ operators).
Note from equation [25] that a Bogoliubon is a mixture of electrons and holes. From the uk and vk in

equation [27], we have that as ∆k → 0, the amplitudes behave as |uk|2 → 1 for ξk > 0 and |uk|2 → 0

for ξk < 0 whereas|vk|2 → 1 for ξk < 0 and |vk|2 → 0 for ξk > 0. Thus, at the normal state, creating
a Bogoliubon excitation corresponds to creating an electron for energies above the Fermi level and
creating a hole (destroying an electron) of opposite momentum and spin for energies below the Fermi
level. At the superconducting state, a Bogoliubon becomes a superposition of both an electron and a
hole state. The BCS ground state therefore corresponds to the vacuum of Bogoliubons, i.e γ |∅⟩ = 0.

C. The BCS ground state

If one desires, one can describe this BCS ground state |∅⟩ in terms of the original electronic ground
state |0⟩. We start by expressing the BCS ground state as an arbitrary combination of Cooper pairs,
reading

|∅⟩ = N
∏
q

eθq |0⟩ with θq = αqc
†
qσc

†
−qσ̄, [29]

N a normalization constant and αq a function to be determined. See that, if one acts with ckσ on the
ground state above the only term inside the product that does not commute with ckσ is the one for
which q = k. We have ckσe

θk |0⟩ =
∑+∞

n=1 ckσθ
n
k/n! |0⟩. Now, from the vacuum of electrons condition

ckσ |0⟩ = 0, from the vacuum of Bogoliubons conditions ukckσ |∅⟩ = vkc
†
−kσ̄ |∅⟩ and from the following

commutations relations, [ckσ, θk] = αkc
†
−k↓ and

[
θk, c

†
−kσ̄

]
= 0 , one �nds that αk must correspond

to the ratio vk/uk. Finally, from Pauli's exclusion principle
(
c†kσc

†
−kσ̄

)n
= 0 for n > 1 one �nds the

normalized BCS ground state as being

|∅⟩ =
∏
k

(
uk + vkc

†
kσc

†
−kσ̄

)
|0⟩ , [30]

where the normalization constant is found to be N =
∏

k uk through ⟨∅|∅⟩ = 1. Also, recall that the
phase of the Cooper pairs is determined solely by the coe�cient v∗k, and this phase coincides with the
phase of the gap function ∆k.
Need to �nish this paragraph still. This demonstrates immediately that N̂p = −i∂/∂φ suggesting

that particle number and phase are canonically conjugated variables, i.e. there should be a Heisenberg
uncertainty relation between both quantities.

D. The gap equation

Let us now determine an explicit expression for gap function ∆k, given self-consistently by equa-
tion [24]. We start by expressing the electronic operators in terms of the Bogoliubons' using the
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transformation in equation [25]. We obtain

∆k = − 1

N

∑
k′

Vkk′u∗k′vk′

(〈
γ−k′↓γ

†
−k′↓

〉
−
〈
γ†k′↑γk′↑

〉)
[31]

Now, since the Bogoliubons follow the Fermi-Dirac distribution and have an energy dispersion Ek, one
has that 〈

γ−k′↓γ
†
−k′↓

〉
−
〈
γ†k′↑γk′↑

〉
=

(
1− 1

eβEk′+1

)
− 1

eβEk′+1
= tanh

(
Ek′

2kBT

)
. [32]

The u∗k′vk′ factor can then be explicit calculated using equations [27] yielding the gap equation

∆k = − 1

N

∑
k′

Vkk′∆k′

2Ek′
tanh

(
Ek′

2kBT

)
[33]

We can now study for which values of the potential Vkk′ and of the temperature T we obtain a
non-zero gap, and therefore the BCS solution discussed in the previous section.
To proceed, we need to discuss the form of the potential. From a phonon-mediated electronic

interaction standpoint, we consider a constant attractive potential Vkk′ = −V0 for a shell of thickness
ℏωD (with ωD the Debye frequency, i.e the "cuto�" frequency where no phonon modes exist in the
approximation that atomic vibrations can be treated as phonons con�ned in the solid's volume) around
the Fermi energy, i.e both |ξk| , |ξk′ | < ℏωD. Since the potential does not depend on k,k′, we look for
a gap function that is also k independent and real, meaning that ∆k = ∆k′ = ∆. This type of gap
function is called an s-wave gap. Given this discussion we obtain

1 = −V0
N

∑
k<kD

1

2Ek
tanh

(
Ek

2kBT

)
= V0ρF

ˆ ℏωD

−ℏωD

dε

2
√
ε2 +∆2

tanh

(√
ε2 +∆2

2kBT

)
[34]

where we used the fact that ℏωD ≪ µ to approximate the density of states per spin ρ(εk) by its value
at the Fermi level ρF , remembering that ξk = εk − µ. This self-consistent equation gives the gap
function for an arbitrary temperature ∆(T ).
Let us now study limiting behaviors of that expression. For example, see that at absolute zero T = 0

the argument of the tanh goes to in�nity. Since tanh(x→ ∞) → 1, and denoting ∆0 ≡ ∆(T = 0), the
evaluation of the integral becomes straightforward, giving rise to an arcsin (ℏωD/∆0) term. Moreover,
in most cases ∆0 is of the order of a few meV, much smaller than ℏωD, which is of the order of a
few hundreds of meV, allowing us to expand the arcsin(x) for large x. This treatment yields the gap
equation at absolute zero

∆0 = 2ℏωDe
− 1

V0ρF . [35]

This equation tells us that an arbitrarily small attractive interaction V0 gives rise to a �nite gap at
zero temperature, showing that the Fermi liquid state is unstable towards the formation of the BCS
superconducting state. We also see that superconductivity is a non-perturbative e�ect, given the
dependence on exp (−1/V0ρF ).

E. Cooper pair instability

To provide additional insight into the derived gap equation, it is useful to consider the problem from
the perspective of single Cooper pair formation (although with some unavoidably repetition of the
procedure done above).
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Consider two electrons, of total wavefunctionΨ(r1, r1), that interact with each other via an attractive
potential V (r1 − r2), with r1, r2 their position vector. As usual, one proceeds by de�ning the relative
displacement r = r1 − r2, the position of the center of mass R = (r1 + r2)/2, m

∗ = 2m the total
mass and µ = m/2 the reduced mass. In these point of reference, the potential will not depend on R
and thus we look for the solution Ψ(r,R) = ψ(r) exp(iK · R). This yields the Schrodinger equation(
−ℏ/2µ∇2

r + V (r)
)
ψ(r) = Ẽψ(r) with Ẽ = E − ℏ2K2/2m∗. For a given eigenvalue Ẽ, the lowest

energy E is the one for which two electrons have opposite momenta because then the momentum of
the center of mass K vanishes, for which Ẽ = E. Depending on the symmetry of the spatial part of
the wave-function, even ψ(r) = ψ(−r) or odd ψ(r) = −ψ(−r), the spins of the electrons will form
either a singlet or a triplet state, respectively, in order to ensure the anti-symmetry of the total wave-
function (switching two fermions corresponds to a sign change). So, for example, if the spin part of
the wavefunction is antisymmetric then the orbital part has to be even, meaning ℓ = 0, 2, ....
Fourier transforming the obtained Schrödinger equation and de�ning an modi�ed wavefunction as

∆(k) = (E − 2εk)ψ(k) with εk = ℏ2k2/2m the free electron energy, one obtains

∆(k) = −
ˆ

dk′

(2π)3
V (k− k′)

2εk − E
∆(k′) [36]

See that for the two electrons to form a bound state of binding energy Eb = 2εk − E, one must have
that a total energy that is smaller than the energy of two independent free electrons, i.e E < 2εk. As
done previously, one now considers a potential that is attractive V (k−k0) = −V0 for |εk| , |εk′ | < ℏωD

and zero otherwise and look for a solution with constant ∆(k) = ∆. Since this implies an even spatial
wave-function, the spins of the two electrons must be anti-parallel, forming a singlet state. The angular
dependence of the wave-function will be that of the Y00 spherical harmonic, hence why we refer to the
gap function as an s-wave gap.
Expressing the gap in terms of the density of states per spin of the two-electron system ρ(ε) ∝

√
ε

yields the equations that determines the value of the bound state energy E < 0 as a function of the
attractive potential −V0, de�ning a minimum value V min

0 of the attractive potential such that E → 0−

remains negative. This would lead us to conclude that a bound state will only form if the attractive
interaction is strong enough, however, in this exercise, we overlooked an uttermost important feature�
that in the actual many-body system, only the electrons near the Fermi level will be a�ected by the
attractive interaction. To mimic this property, we consider the attractive interaction only for the
unoccupied electronic states above the Fermi energy εF such that εk′ − εF , εk − εF < ℏωD. Since
ℏωD ≪ εF , we can approximate the density of states for its value at εF . Moreover, in the limit of
small V0ρF ≪ 1, E is close to 2εF , and we can approximate 2εF − E + 2ℏωD ≈ 2ℏωD. The binding
energy Eb then follows exactly as in equation [35], apart from additional factors of two as a consequence
of the fact that as ∆ → 0 one obtains E → |ξ| in absolute value, meaning that it contains two branches
of particle-hole excitations, doubling the density of states. This demonstrates that a bound state will
ultimately form regardless of how weak the attractive interaction is. Such a bound state is called a
Cooper pair. See that this is fundamentally di�erent from the free electron case we considered before,
where the attractive interaction has to overcome a threshold to create a bound state. The key property
responsible for this di�erent behavior is the existence of a well-de�ned Fermi surface, separating states
that are occupied from states that are unoccupied.

F. Critical temperature

Furthermore, to determine at what critical temperature Tc a non-zero gap �rst appears we go back
to equation [34], send ∆ → 0, and use the fact that ℏωD ≫ kBTc. The superconducting transition
temperature is then found to be

Tc =
2eγE

π

ℏωD

kB
e
− 1

V0ρF [37]
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with γE ≈ 0.577 the Euler constant. See that Tc depends on exp (−1/V0ρF ), same as the gap ∆0, being
non-zero for any arbitrarily small V0. This allows us to de�ne the universal ratio ∆0/kBTc ≈ 1.76. One
of the early successes of BCS theory was the veri�cation that this relationship is approximately satis�ed
in most of the known superconductors at the time. Furthermore, see that BCS theory also addresses
the isotope e�ect since Tc depends linearly on the Debye frequency ωD, which in turn varies as the
inverse square root of the ionic mass M , i.e. Tc ∝ ωD ∝ M−1/2, in agreement with the experimental
observations.
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Part II

Unconventional superconductivity theories

This section's topic index is, for now, not at all thought through. Once I get a better grasp on the
material, it will naturally improve.

Tim Kokkeler's thesis addresses various topics on these.

IV. THEORETICAL MODELS PREFIGURING SUPERCONDUCTIVITY FROM A

GREEN'S FUNCTIONS FORMALISM

Reads of this section are greatly encouraged to �rst check my other notes on many-body theory in
order to be introduced to Green's functions formalism.

A. Exact methods of Green's functions formalism

Non-interacting fermion gas

Light-matter interaction

Jaynes-Cummings two-level model

Dipole-exchange Ferromagnet

Heisenberg model

Ising model
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B. Decoupling methods of Green's functions formalism

Hartree�Fock Theory for an Interacting Fermion Gas

Random Phase Approximation for Ferromagnets

Random Phase Approximation for Antiferromagnets

Electron Correlations and the Hubbard Model

The Anderson Model for Localized States in Metals

V. BEYOND BCS THEORY

A. The generalized Cooper instability

B. Electron-phonon interaction

C. Frolich mechanism

D. Spin-triplet p-wave superconductivity

E. Excitonic condensates

Introduction by DeSarma "Interaction and coherence in two-dimensional bilayers" PRB paper.

VI. KHON-LUTTINGER-RPA FRAMEWORK

Alejandro Pozo's (and Francisco Guinea) thesis has a section on it.

A. Khon-Luttinger mechanism and Friedel oscillations

B. The gap equation and the superconducting kernel

C. The screen Coulomb potential

VII. DIFFUSIVE SUPERCONDUCTIVITY

From soliton bottleneck paper supplementary notes. For the quasiclassical approximation, best to
learn from the Einlenberger and Shelankov paper guiding myself from the Raimondi lecture slides. I
have some drafts on it. In time I will tweak and expand on them.
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A. Abrikosov-Gorkov Green's Functions

B. Eilenberger�Larkin�Ovchinnikov equations

C. Usadel di�usion equation
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