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Abstract

This project deals with the nonlinear dynamics of solitons - localized
waves that maintain their shape due to balance between its natural diffrac-
tion and self-focusing (or self-defocusing) nonlinearity - and the nonlinear
dynamics of breathers - strongly localized solitonic structures that oscillate
periodically in either space, time or both. Firstly, we modulate the instabil-
ity of a plane wave background in the presence of small perturbations and
show the appearance of two different medium, the focusing medium and the
defocusing medium. Secondly, we derive analytically from the NonLinear
Schrödinger Equation with cubic nonlinearity in a self-defocusing media the
spacial solutions of the dark and gray soliton. For last, we derive analyti-
cally, this time in a self-focusing medium, the Akhmediev breather solution
and show that by varying the interval of a parameter one can obtain the
Kuznetsov-Ma breather and the Peregrine soliton solutions.

Este projeto trata da dinâmica não linear dos solitões - ondas local-
izadas que mantêm a sua forma devido ao equiĺıbrio entre a difração nat-
ural e a difração não linear - e a dinâmica não linear dos respiradores -
estruturas solitónicas fortemente localizadas que oscilam periodicamente no
espaço, no tempo ou em ambos. Em primeiro lugar, modulamos a insta-
bilidade de um fundo de onda plana na presença de pequenas perturbações
e mostramos o aparecimento de dois diferentes meios, o meio de focagem
e o meio de desfocagem. Em segundo lugar, derivamos analiticamente da
Equação de Schrödinger Não Linear com não-linearidade cúbica num meio
auto-desfocagem as soluções espaciais de solitão cinzento e escuro. Por
último, derivamos analiticamente, desta vez num meio de auto-focagem, a
solução do respirador de Akhmediev e mostramos que, variando o inter-
valo de um parâmetro, se pode obter também a solução do respirador de
Kuznetsov-Ma e do solitão Peregrine.

Keywords: Nonlinear Schrödinger Equation, Modulation Instability,
Soliton, Dark Soliton, Gray Soliton, Breather, Kuznetsov-Ma Breather,
Akhmediev Breather, Peregrine Soliton
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1. Introduction

The theory of solitons can be applied to various areas of physics such as
optical fibers [1], deep [2] and shallow [3] water dynamics, dynamics of cold
atoms in Bose-Einstein condensates [4], electromagnetic waves in dielectrics
with Kerr nonlinearity (like graphene [5], waveguides [6], and other similar
media). For instance, in the field of optics, the theory of solitons deals
with spatial and temporal [7, 8] Kerr soliton solutions but also with many
other types of solitons such as spatiotemporal solitons [9] (often called light
bullets), Bragg [10] and gap [11] solitons in periodically modulated systems,
discrete solitons in waveguide arrays [12] and photonic crystals [13].

As an example, in Kerr optics, solitons can be formed owing to the in-
duced refractive index change [14] of the medium, which is proportional to
the square of the electric field, or alternatively, proportional to the intensity
of the light. In detail, if the initial pulse has a certain profile and high enough
intensity, the changes on the refractive index can be such that the pulse be-
comes self-trapped by its self-induced optical fiber waveguide. On one hand,
natural/linear dispersion arises because the velocity of the pulse depends on
its wavelength (bigger wavelengths travel faster than smaller wavelengths)
but, on the other hand, the Kerr/nonlinear dispersion arises because the ve-
locity of the pulse depends on its amplitude (bigger amplitudes travel faster
than smaller amplitude) causing the pulse to steepen like a sea wave [15].
Because one can show that for soliton waves bigger wavelengths have smaller
amplitudes, when both linear and nonlinear effects are present, the increment
in velocity caused by the linear dispersion cancels out with the decrement in
velocity caused by the nonlinear dispersion such that the pulse stay stable.
This leads to the formation of a spatial solitons, a pulse that propagates
maintaining its shape and velocity [16].

In this work we derive analytically dark [17] and gray [18] solitons, a
family of solutions in a defocusing medium which appears as moving dips
within a constant amplitude background travelling with a velocity dependent
on the amplitude. The term “dark” originated from nonlinear optics since
this type of solution appears as localized light intensity dips i.e., dark dots
in an otherwise bright background. The term “gray” relates to the similar
solutions with dimmer light intensity dips [19]. Dark solitons are of special
interest because its solution is stationary, its intensity profile goes to zero at
the soliton’s center and its phase profile has an abrupt phase shift of π also
at the soliton’s center [20].
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For context, we briefly discuss and compare another soliton solution. In
contrast with dark solitons, bright solitons [21] appear as moving bright dots
in an otherwise dark background. Contrarily to dark solitons, they form in a
focusing medium within a null background with a boundary condition on the
amplitude function to vanish as |x| → ∞ [22]. Another interesting difference
is that a bright soliton has a constant phase opposed to the chirping nature
of the dark soliton, as we will see in the next section.

Along with the already mentioned solutions (which are characterized by
the fact that they propagate without losing the shape of its squared am-
plitude), the NLSE possesses another kind of solutions known as breathers
[23]. These solutions are non-stationary and its squared amplitudes exhibits
localized periodical oscillations. We derive analytically a family of three of
this breather solutions, the Kuznetsov-Ma breather [24, 25], the Akhmediev
breather [26, 27] and the Peregrine soliton [28]. This solutions are very simi-
lar and can be obtained from one another by varying a parameter in a certain
range. The term “breather” alludes to the characteristic that most of this
solutions are localized in space and oscillate in time (like a snorkeller swim-
ming up gasping for air), as is the case for the Kuznetsov-Ma breather [29].
Actually, the term “breather” can also refer to solutions that are localized
in time and oscillate in space, as is the case of the Ahkmediev breather, or
solutions that are localized both in time and space, as is the case of the
Peregrine soliton [30].

Among the breathers, the Peregrine soliton is of special interest because
it resembles “rogue waves”, giant waves that appear from nowhere and disap-
pear without a trace [31]. The “rogue wave” concept is embedded in nearly
all areas of physics and has a wide range of applications due to its property
of being localized in both time and space. They can serve as a model of
elementary particles, make certain periodic patterns that resemble atomic
like structures [32], etc...
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2. Modulational Instability

In this section we consider the simplest solution of the (1+1)D Nonlinear
Schrödinger Equation (NLSE) in the form of a plane wave and show that
under certain conditions it can be either stable or unstable with respect to
small perturbations. This phenomenon is known as modulational instability.

The nonlinear Schrödinger equation, written for the dimensionless time
t, coordinate x and nonlinearity σ

i
∂ψ

∂t
+
∂2ψ

∂x2
+ σ|ψ(x, t)|2ψ(x, t) = 0, (1)

admits the simplest solution in the form of a plane wave

ψ(x, t) = ρ exp(iQx− iΩt). (2)

Here ρ is the amplitude, Q and Ω are the wave number and angular fre-
quency, respectively. Substituting Eq.(2) into Eq.(1) we obtain the dispersion
relation

Ω = Q2 ± σρ2. (3)

Thus, a plane wave that propagates through a nonlinear medium acquires
a phase shift dependent on its amplitude squared ρ2. Note that, in a linear
medium (where σ = 0) the phase shift does no longer depends on ρ2 as
intended.

In the case of an homogeneous solution, which is of special interest, the
dependency on the propagation distance x no longer exists (∂/∂x = 0) and
so, the solution and its respective dispersion relation reduces to

ψ(x, t) = ρ exp
(
iσρ2t

)
, Ω = −σρ2. (4)

Now a natural question appears: how stable is the obtained solution
with respect to small perturbations? To answer this question we represent
a perturbation as a superposition of two propagating waves in opposite di-
rections, V (x, t) = A exp(iqx− iωt) +B∗ exp(−iqx+ iω∗t), with amplitudes
much smaller than that of the plane wave background, this is |V (x, t)| � ρ.
The perturbed solution will have the form

ψ(x, t) = [ρ+ V (x, t)] exp
(
iσρ2t

)
. (5)
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Substituting the perturbed solution back into Eq.(1) and leaving only the
linear terms of the perturbation V (x, t), we obtain

i
∂V

∂t
+
∂2V

∂x2
+ σρ2 [V (x, t) + V ∗(x, t)] = 0. (6)

If we expand the potential,

ωA exp(iqx− iωt)− ω∗B∗ exp (−iqx+ iω∗t)−
−q2 [A exp(iqx− iωt) +B∗ exp (−iqx+ iω∗t)] +

+σρ2
[
A exp(iqx− iωt) +B∗ exp (−iqx+ iω∗t) +

+ A∗ exp (−iqx+ iω∗t) +B exp(iqx− iωt)
]

= 0,

(7)

and collect the terms of each exponential, we obtain the system of coupled
linear equations {

[ω − q2 + σρ2]A+ σρ2B = 0,
σρ2A+ [−ω − q2 + σρ2]B = 0.

(8)

The dispersion relation is obtained by matching the linear system’s de-
terminant to zero,

ω = ±|q|
√

(q2 − 2σρ2). (9)

From this expression its possible to distinguish two distinct cases.
On one hand, if σ < 0 (self-defocusing case), the frequency of the per-

turbation ω is a purely real value and so, the perturbation V (x, t) will be
oscillating in time and will not grow, leading to a stable, constant-intensity
plane wave background.

On the other hand, if σ > 0 (self-focusing case), the instability of the
plane wave is determined by the value of q. If q >

√
2σρ we have a real

value under the root and so, the frequency ω will be a purely real value and
the plane wave solution stays stable. But, if q <

√
2σρ, the value under the

square root becomes negative, the frequency ω becomes a purely imaginary
value, and now the perturbation V (x, t) grows exponentially in time. The
plane wave background will grow in an unstable manner, and eventually will
deviate from the initial profile.
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To see how the instability grows for different perturbations we introduce
the modulational instability gain as g(q) = | Im(ω(q))|, where bigger values
of g(q) indicate more rapidly growing instability. In Fig.1 we plotted the
instability gain g(q) as a function of the perturbation’s wave number q for
several values of the initial amplitude of the plane wave ρ with σ = 1. The
maximum instability occurs at q = ρ with values of maximum gain gmax = ρ2.

Figure 1: Modulation-instability gain g(q) as a function of the perturbation’s wave number
q for several values of the initial amplitude of the plane wave ρ = 1, 2, 3 with σ = 1.
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3. Dark Soliton

3.1. Dark Soliton

A dark soliton is a shape-preserving solution which appears as a stationary
dip in a constant amplitude background. To find its solution, we can start
by making an educated guess that its profile function φ(x) needs to be real
and independent of time, this way the solution will maintain its shape at all
times. We can always introduce a phase that, in the case of an homogeneous
solution, depends only on time. The inicial ansatz is

ψ(x, t) = φ(x)e−iΩt. (10)

Dark solitons can be formed only on a stable plane wave background of
constant amplitude ρ. From the modulational instability analysis (performed
in Sec.2) we already found that stable backgrounds take place in a self-
defocusing medium (σ < 0). We consider σ = −1 and rewrite the NLSE
as

i
∂ψ

∂t
+
∂2ψ

∂x2
− |ψ(x, t)|2ψ(x, t) = 0. (11)

Given the constant amplitude background, we impose the boundary con-
ditions to be

φ(0, x) =

{
±ρ , for x→ −∞.
∓ρ , for x→ +∞. (12)

Substituting the ansatz in Eq.(10) in the NLSE in Eq.(11) we obtain

Ωφ+ φxx − φ3 = 0. (13)

Note that, because the profile function φ(x) is real, the last term is just
φ3(x). We multiply both sides by 2φx and rewrite it as

Ω
dφ2

dx
+

d

dx

(
dφ

dx

)2

− 1

2

dφ4

dx
= 0. (14)

Integrating both sides with respect to x we then have

Ωφ2 + (φx)
2 − 1

2
φ4 = C, (15)

with C being the integration constant.
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The boundary conditions in Eq.(12) and the dip nature of a dark soliton
tells us that the solution asymptotically approaches the constant background
amplitude and thus its derivative will eventually go to zero. Under this
condition, the constant C takes the value

C = Ωρ2 − 1

2
ρ4 =

Ω2

2
. (16)

Substituting Eq.(16) back in Eq.(15) we obtain the differential equation

φx = ±
√

Ω2

2
− Ωφ2 +

1

2
φ4 = ± 1√

2
(Ω− φ2). (17)

This is easily solvable by isolating the φ terms in one side

dφ

Ω− φ2
= ±

√
1

2
dx (18)

and then integrating both sides making the substitution y =
√

1/Ω φ(x)∫
dy

1− y2
= ±

√
Ω

2

∫
dx. (19)

The integral on the left-hand side gives arctanh(y), hence the solution
for our profile function is

φ(x) = ±
√

Ω tanh

[√
Ω

2
(x− x0)

]
, (20)

with x0 being the soliton’s dip center. Substituting φ(x) back in Eq.(10)
we obtain the general solution for a stationary dark solution

ψD(x, t) = ±
√

Ω tanh

[√
Ω

2
(x− x0)

]
e−iΩt, (21)

where Ω > 0. It has a squared modulus of

|ψD(x, t)|2 = Ω tanh2

[√
Ω

2
(x− x0)

]
. (22)
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We plotted |ψD(x, t)|2 in Fig.3(b) as a function of time and propagation
distance x. Because |ψD(x, t)|2 does not depend on time this solution is
stationary. In Fig.2(a) we plotted various profile’s of the solution ψD(x) and
in Fig.2(b) its squared modulus |ψD(x, t)|2 for different values of Ω at t = 0.
Notice that the amplitude goes to zero at the soliton’s dip center - a principal
characteristic of all dark solitons.

Owing to the antisymmetric nature of the tanh function, the soliton’s
phase undergoes an abrupt π shift at the dip center as shown in Fig.2(c),
namely

Arg(ψD(x, t)) =

{
π − Ωt , for x < 0,
−Ωt , for x > 0.

(23)

Among other characteristics of the dark soliton, the dependence of its
width on the background amplitude ρ =

√
Ω is of great interest. This de-

pendence is depicted in Fig.2(d). We rewrite the soliton solution as

ψD(x) =
√

Ω tanh(x/L), (24)

with L =
√

2/Ω being the dark soliton width. Higher amplitudes of the

background ρ =
√

Ω correspond to the lower widths of the dark soliton, sup-
ported by this background.
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Figure 2: Profiles at t = 0 for various values of Ω (depicted in the legend) of (a) dark soliton
solutions ψ(x, 0), (b) its magnitudes squared |ψ(x, 0)|2 and (c) its phases Arg(ψ(x, 0)).
The phase profiles at t=0 coincide for all Ω. In (d) we represent the dependence of the
dark soliton width L on the frequency Ω [frequencies of solitons in (a)–(c) are depicted
by the dots of respective colors in (d)].

3.2. Gray Soliton
Gray solitons are in the same family of solutions as the dark solitons,

they both are shape-preserving solutions which appear as dips in a constant
amplitude background. They differentiate from each other because the gray
soliton solution is not stationary - it propagate with constant velocity, which
depends on the background amplitude. In addition, a gray soliton has a non-
zero intensity profile at the dip’s center and do not has the abrupt π phase
shift, instead this phase shift is more gradual and smooth along space. As
it will be shown, both the intensity at the dip center and the phase-shift are
determined by the soliton velocity.

We start by making the educated guess that, if the soliton is non-stationary
and is moving with a constant velocity v ,then its solution can be expressed
in the form of a travelling wave

ψ(x, t) = [f(x− vt) + ig(x− vt)] exp(−iΩt). (25)

Here f(x − vt) and g(x − vt) are supposed to be real functions. We
introduce the substitution variable ξ = x − vt and right away substitute
this anzatz into the NLSE with σ = −1 in Eq.(11) (as we did for the dark
soliton). Note that, because of the change of variable, we have ∂/∂x = ∂/∂ξ
and ∂/∂t = −v∂/∂ξ. After the above-mentioned substitution, we have

Ω[f + ig]− iv[fξ + igξ] + [fξξ + igξξ]− [f 2 + g2][f + ig] = 0 (26)
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Separating the real and imaginary part we get the coupled system of two
equations

Ωf + vgξ + fξξ − [f 2 + g2]f = 0, (27)

Ωg − vfξ + gξξ − [f 2 + g2]g = 0. (28)

Multiplying Eq.(27) by 2fξ and Eq.(28) by 2gξ and summating results we
get

2Ωffξ + 2fξfξξ + 2Ωggξ + 2gξgξξ − 2[f 3fξ + g2ffξ + f 2ggξ + g3gξ] = 0. (29)

Integrating the above equation, we obtain the first integral

Ωf 2 + (fξ)
2 + Ωg2 + (gξ)

2 −
[

1

2
f 4 + f 2g2 +

1

2
g4

]
= C1. (30)

Here C1 is the constant of integration, which can be found from the
boundary condition. The absolute value of the function at ξ = ±∞ is
|ψ(±∞, t)| = ρ =

√
Ω or, in other words, f(±∞)2 +g(±∞)2 = Ω. As we did

for the dark soliton, since the solution at ξ = ±∞ asymptotically approaches
the plane wave background its derivative approaches zero at ξ = ±∞. From
these two conditions we obtain the constant of integration to be

C1 = Ω2/2. (31)

To obtain the second integral of Eqs.(27) and (28), we multiply Eq.(27)
by 2g and Eq.(28) by 2f and subtract the resulting equation instead. We get

2vgξg + 2vfξf + 2fξξg − 2gξξf = 0, (32)

and, if we integrate on both sides we obtain

v[f 2 + g2] + 2fξg − 2gξf = C2, (33)

with C2 being the integration constant. Applying the above-mentioned
boundary conditions, we have

C2 = vΩ. (34)
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Note that Eq.(30) and Eq.(33) possess an important property: if f and
g are solutions then (

f̃
g̃

)
=

(
cosϕ − sinϕ
sinϕ cosϕ

)(
f
g

)
(35)

are also solutions, which correspond to the adding of a constant phase to
the solution in Eq.(25), namely ψ̃ = ψ exp(iϕ).

We seek the solutions of Eq.(30) and Eq.(33) for the case when g does
not depend on ξ, this is, g = G is now a constant. In this case Eq.(30) and
Eq.(33) can be rewritten in the form

fξ = ± 1√
2

[Ω− (f 2 +G2)]. (36)

fξ =
v

2G
[Ω− (f 2 +G2)]. (37)

From this expressions we get that G = ±v/
√

2. We rewrite them as

fξ = ± 1√
2

[
Ω− v2

2
− f 2

]
(38)

In full analogy with the previous section, we can find the solution of the
above equation to be

f(x− vt) = ±
√

Ω− v2

2
tanh

[√
Ω

2

(
1− v2

2Ω

)
(x− vt− x0)

]
. (39)

As a result, the solution of a gray soliton has the form

ψG(x, t) =
√

Ωe−iΩt

(
i
v

vc
+

√
1− v2

v2
c

tanh

[√(
1− v2

v2
c

)
Ω

2
(x− vt)

])
.

(40)
where vc =

√
2Ω is the critical velocity such that v < vc and the dip’s

center x0 is chosen to be at x0 = 0.
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It’s useful to employ a single parameter θ (remember that
√

Ω represents
the background amplitude, it’s not a parameter) by identifying

sin θ =
v

vc
and cos θ =

√
1− v2

v2
c

(41)

Notice that the velocity of the soliton v is dependent on the background
amplitude Ω through the parameter θ. In the special case of θ = 0, the
velocity v goes to zero and we recover the dark soliton solution in Eq.(21).
We rewrite the solution as

ψG(x, t) =
√

Ωe−iΩt

(
i sin(θ) + cos(θ) tanh

[√
Ω√
2

cos(θ)
(
x−
√

2Ω sin(θ)t
)])

,

(42)
with a squared modulus of

|ψG(x, t)|2 = Ω

(
sin2(θ) + cos2(θ) tanh2

[√
Ω√
2

cos(θ)
(
x−
√

2Ω sin(θ)t
)])

.

(43)
In Fig.3(a) we plotted |ψG(x, t)|2 as a function of time and propagation

distance with Ω = 1 and θ = 3π/16. As it can be seen, the gray soliton
is moving with constant velocity v =

√
2 sin(3π/16) but its shape is kept

constant.
In Fig.4(a) we show the dependency on the parameter θ by plotting several

profiles of |ψG(x, t)|2 with Ω = 1 and different values of θ. For all gray
solitons, the dip minimum always occurs at the dip center with a value of
|ψG(x0, t)|2 = Ω sin2(θ). Larger values of the phase θ correspond to the
shallower center dips of the gray soliton. For the special case of θ = 0 the
dip minimum goes to zero as expected for dark solitons.

In Fig.4(b) we show several phase profiles Arg(ψG(x, 0)) for the same
values of θ as those in Fig.4(a). For a given value of θ, the spatial distribution
of the phase of the gray soliton varies from π−θ at x→ −∞ to θ at x→∞.
It can also be seen that larger values of θ correspond to smoother spatial
variation of the phase. For the special case of θ = 0 we recover the dark
soliton phase, an abrupt π shift at the dip center.
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In the limit where θ = π/2, the soliton has the same constant amplitude as
the background and a constant phase of π/2, there is no dip and the solution
recovers the background plane wave in Eq.(2) with a π/2 phase shift.

Figure 3: Spatio-temporal evolution of the amplitude of a (a) gray soliton with θ = 3π/16
a (b) dark soliton (with θ = 0). In both cases Ω = 1. The gray soliton has a velocity of
v =
√

2 sin(3π/16) and it reaches its minimum of sin2(3π/16) at its dip center while the
dark soliton is stationary and reaches its minimum of zero also at its dip center.

Figure 4: Spatial profiles of the (a) amplitude and the (b) phase of various gray solitons
calculated with different values of θ (depicted in the legend).
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4. Breather Soliton

4.1. Akhmediev Breather Solution

In this section we derive analytically the solution of the Akhmediev
breather and show that is possible to obtain two other solutions, the Kuznetsov-
Ma breather and the Peregrine soliton, solely by changing the interval of a
certain parameter. As usual, we make an initial ansatz and show that un-
der certain boundary condition and educated guesses and restrains one can
obtain the desire solution.

Contrarily to what we did for the dark and gray soliton, this breather
solution can only be formed within a self-focusing medium with non-zero un-
stable background. Because of this, we will be deriving the breather solution
instead from the NLSE with σ = +1,

i
∂ψ

∂t
+
∂2ψ

∂x2
+ |ψ(x, t)|2ψ(x, t) = 0. (44)

We start by making the ansatz by presupposing that only the real part
of the amplitude, Q(x, t), depends both on time and on the propagation
coordinate, while the imaginary part of the amplitude, δ(t), and the phase,
φ(t), depend upon time only

ψ(x, t) = [Q(x, t) + iδ(t)] exp[iϕ(t)]. (45)

Substituting this ansatz into Eq.(44) and separating the real and imagi-
nary parts we obtain a system of two ordinary differential equations

−ϕtQ− δt +Qxx +Q3 + δ2Q = 0, (46)

−ϕtδ +Qt +Q2δ + δ3 = 0. (47)

To obtain the first integral of Eq.(46) we multiply it by 2Qxx and integrate
in the spatial coordinate on both sides, obtaining

−ϕtQ2 − 2δtQ+ (Qx)
2 +

1

2
Q4 + δ2Q2 = h(t). (48)

Note that the integration parameter h(t) is not a constant - it depends
on time because we integrated only on the spatial coordinate while Q(x, t)
and δ(t) are time-dependent.
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We rewrite Eq.(48) in order to express explicitly the spatial derivative,

Qx = ±
√
h+ ϕtQ2 + 2δtQ−

1

2
Q4 − δ2Q2. (49)

Similarly, we rewrite Eq.(47) to express explicitly the time derivative,

Qt = ϕtδ −Q2δ − δ3. (50)

For the system of equations explicit in Eq.(46) and Eq.(47) to be compat-
ible, the relation Qxt = Qtx should be hold. On one hand, if we differentiate
Eq.(49) with respect to time,

Qxt = ±ht + ϕttQ
2 + 2ϕtQQt + 2δttQ+ 2δtQt − 2Q3Qt − 2δδtQ

2 − 2δ2QQt

2
√
h+ ϕtQ2 + 2δtQ− 1

2
Q4 − δ2Q2

,

(51)
and substitute Qt from Eq.(50) into the above equation, we obtain

Qxt = ±ht + ϕttQ
2 + 2δttQ− 2δδtQ

2 + 2[ϕtQ+ δt −Q3 − δ2Q][ϕtδ −Q2δ − δ3]

2
√
h+ ϕtQ2 + 2δtQ− 1

2
Q4 − δ2Q2

.

(52)
One the other hand, differentiating Eq.(50) with respect to the space

coordinate and substituting Qx from Eq.(49) we obtain

Qtx = −2δQQx = ∓2δQ

√
h+ ϕtQ2 + 2δtQ−

1

2
Q4 − δ2Q2. (53)

Finally, matching the results from Eq.(52) and Eq.(53) we get

Q2[ϕtt+4δδt]+2Q[δtt+ϕ2
t δ−δ3−δ3ϕt−δ5 +2δh]+ [ht+2δtϕtδ−2δtδ

3) = 0.
(54)
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Equating the terms in front of different powers of Q to zero, we obtain a
system of three equations

ht + 2δt
[
ϕtδ − δ3

]
= 0, (55)

δtt + δ
[
ϕt − δ2

]2
= −2δh, (56)

ϕtt = −4δδt. (57)

To solve this system of equation we start by integrating Eq.(57) with
respect to time. Since all functions depend only on time the integration
parameter will be effectively constant, this is

ϕt = −2δ2 +W. (58)

Substituting this expression of ϕt in Eq.(55) and integrating it, we have

h+Wδ2 − 3

2
δ4 = H. (59)

From this, we obtained another constant parameter, the parameter H.
With this results, we can substitute both ϕt from Eq.(58) and h(t) from
Eq.(59) into Eq.(56) to obtain

δtt + δ
[
W − 3δ2

]2
= −2δ

[
H −Wδ2 +

3

2
δ4

]
. (60)

After multiplying the above equation by 2δt and integrating the result,
we introduce a new constant parameter D as

(δt)
2 + δ2

[
W 2 + 2H

]
− 4Wδ4 + 4δ6 = D. (61)

Since all powers of δ are even, it is convenient to make the substitution
z(t) = δ2(t). Noting that (δt)

2 = (zt)
2/4z we rewrite Eq.(61) as

(zt)
2 = −16z4 + 16Wz3 − 4[W 2 + 2H]z2 + 4Dz. (62)

Thus, we started with three real functions to determine Q(x, t), δ(t) and
ϕ(t) and now we have three constant parameters (W , H and D) whom
dictate the class of solutions [except for shifts with respect to both variables
and rotations in the complex plane through a constant angle, as we saw in
Eq.(35)]. Once we solve Eq.(62) and get the solution of z(t) = δ2(t) we
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shall backtrack to Eq.(59) to obtain h(t). Then, with h(t) known, we can go
further back to Eq.(48) to obtain Q(x, t). Up to this point we also have all
the information to obtain ϕ(t) from Eq.(58).

From this point on we consider the situation where the constants W , H
and D are not independent but instead are parametrized by a constant a like

W = 4a− 1, (63)

H = 4a− 1/2, (64)

D = 16a2. (65)

Later, it will be seen that such choice will allow us to find the solution in the
form of a breather (other choices of the constants W ,H,D imposes another
type of solutions). Substituting these expression into Eq.(62) allows one to
rewrite this equation in a much simpler form,

(zt)
2 = −16z

{
z3 − (4a+ 1)z2 + 4z

[
a2 + a

]
− 4a2

}
= −16z(z − 2a)2(z − 1). (66)

Because δ(t) is a real function, z(t) = δ2(t) and (zt)
2 is a positive value, for

the self-consistence of the above equation, we need to require the right-hand
side to be positive. The term (z − 2a)2 is always positive thus the condition
−z(z − 1) > 0 imposes positiveness of the right-hand side of Eq.(66). This
implies that z is constrained to 0 < z < 1. In order to solve Eq.(66) we
introduce a new real function f(t) and make the ansatz

z =
2a [f 2 − 1]

f 2 − 2a
. (67)

Substituting this ansatz in Eq.(66) we obtain a rather simpler differential
equation for f(t) as

(ft)
2 = −8a(2a− 1)(f 2 − 1), (68)

of solution

f(t) = cosh(αt), (69)

where α =
√

8a(1− 2a).
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Because we defined f(t) as a real function we need the right-hand side of
Eq.(68) to be positive. We have three possible regimes:
1) a < 0 and f > 1; 2) a > 1/2 and f < 1; 3) 0 < a < 1/2 and f > 1;
We will disregard regime 1) because the negativeness of a implies the solution

f(t) = cos
(√

8a(2a− 1) t
)
< 1 which is in contradiction with itself. Thus, it

is only of our interest the cases 2) and 3) since they correspond respectively
to the regime where the Akhmediev breather and Kuznetsov-Ma breather
form. We will see that the remaining Peregrine soliton exists in the limit
between this two regimes. From now on we follow the case 2) where a < 1/2.
Substituting the solution in Eq.(69) into Eq.(67) we rewrite z(t) as

z =
2a sinh2(αt)

cosh2(αt)− 2a
. (70)

As it was mentioned above, in order to obtainQ(x, t) we need to backtrack
to Eq.(48) and substitute the function ϕt(t) from Eq.(58), δ(t) =

√
z(t) from

Eq.(70), and h(t) from Eq.(59), along with the parameters W and H from
Eq.(63) and Eq.(64) respectively. We then obtain

(Qx)
2 = ϕtQ

2 + 2δtQ−
1

2
Q4 − δ2Q2 + h

= (4a+ 1− 3z)Q2 + 4Q
√

(z − 2a)2(1− z)− 1

2
Q4

+ 4a− 1

2
− (4a+ 1)z +

3

2
z2. (71)

This equation can be rewritten as

Q2
x = −1

2
(Q−Q3)2(Q−Q1)(Q−Q2), (72)

where

Q1 =
√

1− z + 2
√

2a− z, (73)

Q2 =
√

1− z − 2
√

2a− z, (74)

Q3 = −
√

1− z. (75)

Since we are following the case where a < 1/2, we have from Eq.(70) that
0 < z < 2a < 1 and so, Q3 < 0, Q2 − Q3 > 0 and Q1 − Q2 > 0 such that
Q1 > Q2 > Q3.
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Analogous to what has been done for z(t) in Eq.(67), we make the ansatz

Q =
Q1(Q2 −Q3) +Q3(Q1 −Q2)g2(x)

(Q2 −Q3) + (Q1 −Q2)g2(x)
(76)

and substitute it into Eq.(72) to get a much simpler differential equation
in terms of a new real spacial function g(x),

4(gx)
2 =

1

2
(Q1 −Q3)(Q2 −Q3)

[
1− g2

]
= 2(1− 2a)

[
1− g2

]
,

(77)

whose solution can be expressed as

g(x) = sin

(
βx

2

)
(78)

where β =
√

2(1− 2a).

Since in our case a < 1/2 and g < 1 [last fact follows from the properties
of the sin in Eq.(78)], the right-hand side of Eq.(77) is positive, which proofs
self-consistency of this equation and its solution.

Substituting Eq.(73), Eq.(74), Eq.(75) and Eq.(78) in Eq.(76) we obtain
an expression for Q in the form

Q =
(1− z)− 2(2a− z) +

√
1− z

√
2a− z cos(βx)√

1− z −
√

2a− z cos(βx)
. (79)

Now, if we substitute the following expressions taken from Eq.(70),

√
1− z =

β√
2

cosh(αt)√
cosh2(αt)− 2a

, (80)

√
2a− z =

√
aβ√

cosh2(αt)− 2a
, (81)

we can write Q’s final expression as

Q =
β

√
2
√

cosh2(αt)− 2a

cosh2(αt)− 4a+
√

2a cosh(αt) cos(βx)

cosh(αt)−
√

2a cos(βx)
. (82)
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With Q(x, t) and δ(t) known, it is now possible to obtain the remaining
function from our initial ansatz, the phase ϕ(t). Integrating Eq.(58) we
obtain

ϕ(t) = (4a+ 1)t− 2

∫ t

0

z(t′)dt′

= (4a+ 1)t− 4a

∫ t

0

sinh2(αt′)

cosh2(αt′)− 2a
dt′.

(83)

This expression can be rewritten in terms of tanh(αt) as

ϕ(t) = (4a+ 1)t+
4a

1− 2a

∫ t

0

[
1

1 + 2a
1−2a

tanh2(αt′)

tanh2(αt′)

tanh2(αt′)− 1

]
[1− tanh2(αt′)]dt′

= (4a+ 1)t+ 4a

∫ t

0

[
1

1 + 2a
1−2a

tanh2(αt′)
+

1

tanh2(αt′)− 1

]
[1− tanh2(αt′)]dt′.

(84)

Here we expressed the first term inside the squared brackets as a sum,
this way the second integral greatly simplifies. We obtain

ϕ(t) = (4a+ 1)t+
4a

α

∫ t

0

1

1 + 2a
1−2a

tanh2(αt′)
d tanh(αt′)− 4a

∫ t

0

dt′. (85)

After the following substitution,

ϕ(t) = t+
4a√

8a(1− 2a)

√
1− 2a

2a

∫ t

0

1

1 + 2a
1−2a

tanh2(αt′)
d

[√
2a

1− 2a
tanh(αt′)

]
,

(86)
and integration, the expression for the phase ϕ(t) can be written in its

final form as

ϕ(t) = t+ arctan

(√
2a

1− 2a
tanh(αt)

)
. (87)
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In order to substitute in the original ansatz in Eq.(45), we represent the
phase term explicitly as

eiϕ(t) = eit

[
cos

{
arctan

(√
2a

2a− 1
tan(αt)

)}

+ i sin

{
arctan

(√
2a

2a− 1
tan(αt)

)}]
. (88)

Using the trigonometric relations 1
cos2(x)

= 1 + tan2(x) and sin2(x) =
tan2(x)

1+tan2(x)
, the phase term in Eq.(88) can be rewritten as

eiϕ(t) = eit
1 + i

√
2a

2a−1
tan(αt)√

1 + 2a
2a−1

tan2(αt)
. (89)

We can now substitute Q(x, t) from Eq.(82), δ(t) =
√
z(t) from Eq.(70)

and eiϕ(t) from Eq.(89) into Eq.(45) to obtain the solution

ψ(x, t) = eit
1 + i

√
2a

1−2a
tanh(αt)√

1 + 2a
1−2a

tanh2(αt)

i √2a sinh(αt)√
cosh2(αt)− 2a

+

+
β

√
2
√

cosh2(αt)− 2a

cosh2(αt)− 4a+
√

2a cosh(αt) cos(βx)

cosh(αt)−
√

2a cos(βx)

 .
(90)

With the aim of simplifying terms, it’s useful to note that the square-
rotted term in the denominator of the exponential can be expressed as

1 +
2a

1− 2a
tanh2(αt) =

1

1− 2a

cosh2(αt)− 2a

cosh2(αt)
. (91)
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This way, the term
√

cosh2(αt)− 2a appears in denominator twice and

we can get rid of the squared root. Thus, Eq.(88) can be simplified as

ψ(x, t) =
eit√

2

1

cosh(αt)−
√

2a cos(βx)

√
1− 2a cosh(αt) + i

√
2a sinh(αt)

cosh2(αt)− 2a
×

×
[
β
{

cosh2(αt)− 4a+
√

2a cosh(αt) cos(βx)
}

+

+ i2
√
a sinh(αt)

{
cosh(αt)−

√
2a cos(βx)

}]
. (92)

After expanding terms the above expression will have the form

ψ(x, t) =
eit

cosh (αt)−
√

2a cos (βx)

1

cosh2 (αt)− 2a
×

×
[
(1− 2a)

{
cosh3 (αt)− 4a cosh (αt) +

√
2a cosh2 (αt) cos (βx)

}
−

− 2a sinh2 (αt)
{

cosh (αt)−
√

2a cos (βx)
}

+

+ i
{√

2a
√

1− 2a cosh (αt) sinh (αt)
{

cosh (αt)−
√

2a cos (βx)
}

+

+
√
a sinh (αt) β

{
cosh2 (αt)− 4a+

√
2a cosh (αt) cos (βx)

}}]
.

(93)

Notice that the term
√
a sinh(αt)β

√
2a cosh(αt) cos(βx) at the end of the

two last terms cancel out. Rearranging common terms and cancelling out
others doing some algebraic manipulation the expression greatly simplifies to

ψ(x, t) =
eit

cosh (αt)−
√

2a cos (βx)
×

×
[
(1− 4a) cosh (αt) +

√
2a cos (βx) + iα sinh (αt)

]
. (94)

Using the definition under Eq.(78) that β =
√

2(1− 2a) we have that
(1 − 4a) cosh(αt) = β2 cosh(αt) − cosh(αt). Note that, this way, there is a
common term with the denominator (except for an irrelevant minus sign that
represents a global phase) and for last, we obtain the final expression for the
Akhmediev breather solution as
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ψA(x, t) =

[
1 +

β2 cosh(αt) + iα sinh(αt)√
2a cos(βx)− cosh(αt)

]
eit, (95)

where 0 < a < 1/2, β =
√

2(1− 2a) and α = 2
√
aβ.

To visually represent the property of this type of solutions we plotted
in Fig.5 the amplitude of two Akhmediev breathers as a function of time
and propagation distance. The first [see Fig.5(a)] is characterized by the
parameter a = 0.25 and the second one [shown in Fig.5(b)] by a = 0.00001.
As it can be seen, the key point of this type of waves is that they are localized
in time but oscillate in space. The function reaches its maximum at a certain
time t0 = 0 (in this case t0 = 0) as an oscillating pattern in space and then
quickly fades away to the amplitude of the unstable plane wave background.

Note that the amplitude and time scales are immensely different. While
the breather in Fig.5(a) exists only in a range of ≈ 10s with a maximum
amplitude of ψA(0, 0) ≈ 5.8, the breather in Fig.5(b) exists during ≈ 1000s
with a maximum amplitude of ψA(0, 0) ≈ 1.018 being just slightly above the
background. For bigger values of the parameter a the maximum amplitude
increases by

|ψAmax(a)|2 =

(
1 +

2(1− 2a)√
2a− 1

)2

. (96)

For smaller values of the parameter a the localization in time starts to
“spread” and at the limit where a → 0 it extends over all time with an
amplitude equal to the non-zero background i.e., only remains the plane
wave background.

However, the propagation distance scale is the same for the two figures.
The breather at Fig.5(a) does approximately three full oscillations while the
one at Fig.5(b) already did approximately five full oscilattion. The frequency
of oscillation in space for a Akhmediev breather depends on a as

ωA(a) = β =
√

2(1− 2a) (97)
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Figure 5: Spatio-temporal evolution of the squared amplitude of the Akhmediev breather
with (a) a = 0.25 and (b) a = 0.00001.

4.2. Kuznetsov-Ma Breather Solution

To obtain the Kuznetsov-Ma breather solution, as we mentioned above
when we made explicit the three possible regimes for the solutions of Eq.(68)
and Eq.(77), we need to evaluate the Akhmediev breather solution in the
regime where the parameter is in the interval a > 1/2 instead of 0 < a < 1/2.

We start by identifying that in this new interval β =
√

2(1− 2a) is a
purely imaginary value instead of a real one. Thereby, we define a new con-
stant β′ such that β = iβ′ and, because α depends on β, we also define α′

such that α = iα′. It’s easy to see that expanding the trigonometric func-
tions into their exponential forms and substituting for this new constants we
obtain the following relations with the hyperbolic functions:
cosh(αt) = cos(α′t), sinh(α) = i sinh(α′t) and cos(βx) = cosh(β′x). Sub-
stituting this expressions into Eq.(95) we obtain the Kuznetsov-Ma breather
solution as

ψKM(x, t) =

[
1− (β′)2 cos(α′t) + iα′ sin(α′t)√

2a cosh(β′x)− cos(α′t)

]
eit, (98)

where a > 1/2, β′ =
√

2(2a− 1) and α = 2
√
aβ′.

Again, to visually represent the properties of this type of solutions we
plotted in Fig.6 the squared amplitude of two Kuznetsov-Ma breathers as
a function of time and propagation distance. The first breather [depicted
in Fig.6(a)] is characterized by the parameter a = 0.8 and the second one
[shown in Fig.6(b)] by a = 2. Contrarily to what we saw in the Akhmediev
breather solution, this type of waves are localized in space but oscillate in
time. Elsewhere expect in the vicinity of some value of x0 (in this case
x0 = 0) the function amplitude is close to that of the unstable plane wave
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background. At the same time, the amplitude at x = x0 oscillates up and
down like a snorkeller swimming up and down gasping for air, hence the term
“breather”.

Note that the amplitude scales are different between the two figures.
While the first breather [in Fig.6(a)] reaches a maximum of amplitude of
|ψKM(0, 0)|2 ≈ 12.46, the second one [in Fig.6(b)] reaches a maximum of
|ψKM(0, 0)|2 ≈ 25. For larger values of the parameter a the solution achieves
increasingly higher amplitudes

|ψKMmax|2 =

(
1− 2(2a− 1)√

2a− 1

)2

. (99)

However, both the time scale t and propagation distance scale x are the
same for the two figures which means that breather at Fig.6(b) oscillates a
lot faster than the one at Fig.6(a). This happens because the frequency of
oscillation in time for a Kuznetsov-Ma breather depends on a as

ωKM(a) = β′ =
√

2(2a− 1) (100)

As it can be see from the two examples, the bigger the value of the
parameter a the more localized in space the wave is, although this difference
is not as prominent as the differences between two Akhmediev breather.

Figure 6: Spatio-temporal evolution of the squared amplitude solution of the Kuznetsov-
Ma breather with (a) a = 0.8 and (b) a = 2
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4.3. Peregrine Soliton Solution

For last, the Peregrine soliton solution is obtained at the intermediate
regime in the limit when a → 1/2. It’s important to note that the function
is not defined at a = 1/2 because if we substitute directly in the Akhmediev
breather solution in Eq.(95) we end up with an indeterminate form 0/0. This
way, we resorted to Taylor expansion. We start by noting that as a → 1/2
we get β → 0 and consequently α→ 0, and so

α = 2
√
aβ = 2

√
1

2
− β2

4
β = β

√
2− β2 ≈

√
2β. (101)

The factor
√

2a is expressed as

√
2a =

√
1− β2

2
≈ 1− β2

4
, (102)

and the trigonometric and hyperbolic functions as

cos(βx) ≈ 1− (βx)2

2
,

sinh(αt) ≈ αt ≈
√

2βt,

cosh(αt) ≈ 1 +
(αt)2

2
≈ 1 + (βt)2. (103)

Substituting this expansions back in Eq.(95) we obtain

ψ(x, t) = eit

1 +
(β)2 {1 + (βt)2}+ i

√
2β
√

2βt{
1− (β)2

4

}{
1− (βx)2

2

}
− 1− (βt)2

 ,
= eit

[
1 +

(β)2 + 2i (β)2 t

1− (β)2

4
− (βx)2

2
− 1− (βt)2

]
, (104)

which leads directly to the final expression of the Peregrine soliton

ψP (x, t) =

[
1− 4

1 + 2it

1 + 2x2 + 4t2

]
eit (105)
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In Fig.7 we plotted the squared amplitude of this solution. As it can
be seen, this soliton solution is localized in both time and space because it
corresponds to the limiting case of infinite period of both the space-periodic
Akhmediev breather and the time-periodic Kuznetsov-Ma breather. This
type of waves starts as a weak oscillation on a non-zero continuous back-
ground but suddenly, it rapidly increases its amplitude forming a sharp peak
who quickly fades away unnoticed. At maximum amplitude, this solution has
an amplitude that is 9× larger than the non-zero continuous background, in
this case |ψP (0, 0)|2 = 9.

Figure 7: Spatio-temporal evolution of the amplitude solution of the Peregrine soliton.

5. Conclusion

To conclude, we have obtained analytically two different sets of soliton
solutions of the NLSE namely the dark solitons and the breathers.

Firstly, we considered the stability of a plane wave background with re-
spect to small perturbations (modulational instability) and demonstrated
that the plane wave solution is stable in the self-defocusing case (σ < 0) and
unstable in the self-focusing case (σ > 0). This analysis was critical because
the required solutions can be formed only under certain conditions: dark
solitons only exists in a self-defocusing medium with a constant amplitude
stable background while the breathers only exists in a self-focusing medium
with a non-zero unstable background.

Secondly, we have analytically obtained the family of NLSE solutions in
the form of a gray soliton - non-stationary dips that propagate with constant
velocity, maintaining their shape along its propagation, and whose minimum
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amplitude, velocity and frequency are determined by the amplitude ρ of the
constant amplitude background. We have shown that the special solution of
the dark soliton (whose minimal amplitude attains zero) is the limiting case
of a gray soliton when the single parameter θ is zero. The dark soliton is a
stationary (non-moving) dip with a characteristic tanh profile and an abrupt
π shift at the dip’s center.

Thirdly, we have analytically obtained the family of breather solutions
in the form of the Ahkmediev breather, the Kuznetsov-Ma breather and
the Peregrine soliton, and demonstrated that these solutions are related to
each other depending upon the value of the parameter a (0 < a < 1/2,
a → 1/2, and a > 1/2 for the Akhmediev breather, the Kuznetsov-Ma
breather and the Peregrine soliton, respectively). We have also demonstrated
that the Akhmediev breather is localized in time but oscillates in space, the
Kuznetsov-Ma breather is localized in space but oscillates in time, and the
Peregrine soliton is localized both in time and space (as it can be considered
an intermediate case between the Kuznetsov-Ma and Akhmediev breathers).
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